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Abstract—This research is focused on the performance of
a Deep Reinforcement Learning method on an agent (mobile
robot) in a simulated virtual environment (Operating Room)
for medical applications. The purpose of this research is to
compare suitable decisive actions taken by the agent to achieve
its goal target. Executing this goal requires the implementation
of a reward-penalty system for observation and analysis. The
agent’s accumulated reward is based on the best-navigated
decision to avoid collisions; solely generating an intelligent agent
system. We reviewed previous works on the impact of Deep
Reinforcement Learning algorithms on an agent in areas of
navigation and exploration. Adopting a Deep Reinforcement
Learning method and a physical simulator, we trained and tested
the agent using existing environments and our modeled operating
room, respectively. Measuring the positive reward output of the
experiment with different parameters of the algorithm such as the
learning rate, maximum Q-value and the average time to attain its
goal position, we presented our work with plots of the experiment
and compared it with a widely known traditional method. Our
experimental results indicated that the agent achieved a high
positive reward of 3800 in our operating room environment with
a learning rate of 0.5. Our research aimed at training an agent
to make intelligent decisions in achieving its goal destination
without prior experience and input data. Reinforcement Learning
provides a structure for robotics to function effectively; utilizing
and engaging a robot to navigate and explore in any given
environment.

Index Terms—Reinforcement Learning, Deep Q-Networks,
Navigation, Exploration, SLAM, Operating room, Biomedical
application.

I. INTRODUCTION

The use of artificial intelligence has become relatively
common for many biomedical applications, including patient
monitoring and evaluation, medical supplies delivery, and
assisting healthcare professionals. The assistance of medical
robots grants a better-quality care, exactness of its workflow,
a robust and resilient healthcare system; alleviating trained
operators from tough and tedious tasks [1]. Machine learning
is an essential component of artificial intelligence (AI) and
spans through all fields of AI. Although the concept of
machine learning (reinforcement learning) and robotics has
effectively employed non-mobile medical robots in the medical
field for healthcare and surgical procedures, navigation and
exploration continue to remain as two of the biggest challenges
in medical robotics [2]. For example, the frustration of patient

overpopulation when doctors and nurses are worn-out. This
factor is as a result of healthcare professionals working around
the clock to check vitals for the outbreak of a severe novel
respiratory disease [3].

In Reinforcement Learning, an agent (robot) chooses an
action based on its current decision, receives feedback and the
next state from its given environment. The agent makes better
action selections in future states through repeated learning, as
it continues to explore and exploit the environment. There are
three main components of an RL system; the state, action, and
reward. The agent receives a state in a state space, decides to
select an action from an action space, gets a scalar reward,
and moves to the next state to complete the cycle according
to the environment dynamics [4].

The mobile agent aims to discover an optimal policy that
provides the highest positive reward over time. Previous
dynamic programming (DP) methods such as Simultaneous
Localization Autonomous Mapping (SLAM) employs an al-
gorithm for path planning and navigation. A mobile robot
can simultaneously formulate a map of any given environment
and derive it’s the location through SLAM [5]. However, this
method is time-consuming as the algorithm needs to first
map its environment and create a path to follow through
DP planning [6]. The use of RL methods with deep neural
networks operates the mapping and pathfinding as end-to-end
so that the progress works more structurally and efficiently.

In this work, the discussion of the implementation of Deep
Q-learning (DQN) on an agent (robot) is our primary task,
and we conducted experiments on a modeled simulated virtual
environment through the communication between the Robot
Operating System and a virtual simulator. The mobile robot
engages its environment based on a reward and penalty system
to avoid repetitive exploration and ensure time efficiency.
Employing this method in healthcare reduces the burden of
medical professionals and facilitates smooth workflow in the
hospital. Fig. 1 describes our workflow, and its criteria has
been used as a guideline in this paper. Section II reviews
the previews works on this topic, and Section III explains the
Reinforcement Learning method. Section IV explains the agent
and the operating room environment used for this paper, and
Section V provides details about its methodology. Section VI
describes the results and Section VII is the conclusion.
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Fig. 1. Simple Architecture Diagram.

Our principal focus of research is the utilization of a Deep
Reinforcement Learning method to minimize the workload
of medical operators in the hospital by providing them with
mobile robots that are equipped with a high-quality navigation
and exploration system to perform both simple and complex
tasks.

II. PREVIOUS WORKS

The application of Reinforcement Learning for navigation
and exploration is evident in different fields. For example,
Faust et al. [7] involved the integration of a path planning algo-
rithm with Deep Deterministic Policy Gradient for individual
navigation tasks. This hierarchical method tested its robustness
on two navigation tasks: a complex indoor navigational system
using a differential robot and aerial cargo delivery in central
cities. Their approach successfully improved task completion
by the RL agent used for the experiment.

Furthermore, Deep Reinforcement Learning in [8] trained
a nonholonomic mobile robot to navigate in both invisible
virtual and real environments with the help of a mapless
motion planner. The robot reached its goal destination without
colliding with obstacles. The operation of the two model-free
algorithms (Q and DQN) in [9] provided the best actions for
the robot to be self-balanced in a virtual environment. The
environment was built in Gazebo, a virtual simulator, and
combined with the Robot Operating System (ROS) to perform
experiments efficiently at low cost.

Classical methods such as SLAM facilitate a mobile robot
to build consistent maps when placed at an unknown location
in an unfamiliar environment, thereby creating an autonomous
system and providing computational efficiency [10]. Wang et
al. [11] proposed a low-cost, independent mobile robot system
for localization, navigation, and detection and avoidance of
obstacles in an environment. With minimized complexity, the
robot performed various tasks in indoor environments. How-
ever, SLAM strategies assume proper data association, which
leads to uncertainties. The use of different filters initially
improved this problem, but they are computationally expensive
when dealing with high dimensional maps [12].

To solve this uncertainty, we proposed a Reinforcement
Learning approach applied to our modeled operating room
using deep neural networks to process data within any level
of complexity.

III. THEORY AND ALGORITHMS

Deep Reinforcement Learning combines the concept of
deep learning and reinforcement learning. This method allows
the simplification of an ample sample space in complex
environments through deep neural networks, which is essential
for a mobile robot tasked with navigation and exploration.
Therefore this method is a potential solution [8]. The model-
free algorithm expresses the idea that the agent (robot) learns
by trial-and-error from experience explicitly, exploits, and
employs the current best action to maximize rewards.

A. Deep Q Networks

A typical Reinforcement Learning setup consists of an
action, state, reward, policy, and action value. The key to
solving RL problems are either estimating the expected return
when starting in a state or searching for an optimal strategy
[13]. Deep Q Network is a branch of Q-learning. The concept
of the Q-learning algorithm is an off-policy system based on
the Bellman Equation, and the goal is to maximize the Q-
value, which is the cumulative reward, as shown in Equation
1.

Q (s, a) = r (s, a) + γ·maxQ
(
s
′
, a
)

(1)

Gamma γ here ranges from the values of 0 to 1 and
represents the discount factor that maximizes the priority of
future rewards. The equation above expresses the Q-value
resulting from its initial state st and performing action a is the
current reward r (s, a) including the likelihood of the highest
Q-value from the next state st+1. This recursive equation
allows hypothesis for all Q-values with prior knowledge and
convergence to the optimal policy. Equation 2 represents this
principal factor.

Q (St, At)← Q (St, At) + α [Rt+1 + γmaxQ (St+1, a)−Q (St, At)]
(2)

The learning rate is the step size denoted by alpha α. This
hyper-parameter simply determines the update transfer from
old to new information for intelligent decision-making. Al-
though Q-learning is an efficient algorithm, it lacks generality
and is unable to estimate the value of the unseen state. Also,
the amount of memory required to save and update the Q-table
increases with high state values; thus, a considerable amount of
time needed to explore each state. Introducing neural networks
resolves this issue.

Deep Q Network is a model-free algorithm responsible for
approximating the Q-value function. The input for the neural
architecture is the current state, while the output is the cor-
responding Q-value for each of the actions. Training samples
in Reinforcement Learning are usually highly correlated and
less-data efficient, leading to non-convergence for the network.
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DQN uses two key ideas; experience replay and an iterative
update. According to [14], the principle of experience replay
stores the past experiences St, At, Rt, St+1 of an agent at each
time step. This feature merges many episodes into a replay
memory and randomly selects from the “transition pool” to
update the knowledge (Q-table). This pool is the iterative
update. The Loss function represents the Q-learning update
at iteration in Equation 3.

Li (θi) = E(
s,a,r,s

′)∼ U(D)

[(
r + γmaxQ

(
s
′
, a
′
; θ
−
i

)
−Q (s, a; θi)

)2
]

(3)

L is the loss function, and theta i represents the specifica-
tions of the network structure at iteration i while theta −i
refer to the target computations at iteration i. This model
of a convolutional neural network trained with Q-learning
existed in seven Atari 2600 games, and the results from
the model outperformed a human expert on three occasions
[15]. In DQN, optimization and convergence are two essential
characteristics, and therefore we employed a gradient descent
step [16].

IV. EXPERIMENTAL SETUP

A. Agent (TurtleBot 3 Burger)

As shown in Fig. 2 , the robot model TurtleBot 3 Burger
is the agent for this project in a simulated operating room
environment in Gazebo. TurtleBot is a Robot Operating Sys-
tem standard platform robot used for education, high-quality
research, and product prototyping. Due to the high cost of real-
world robotic simulation, the TurtleBot 3 family provides a
reduction in the size of the platform with similar functionality
and quality. It consists of three versions; TurtleBot 3 burger,
waffle, and waffle pi:- all built with a robust embedded system
that is equipped with a 360-degree distance sensor (LIDAR)
used for reflecting nearby obstacles. The Raspberry Pi, which
is below the LIDAR senses and reads data, and further
transfers information to a ’master pc’ for real calculations [17].

Fig. 2. Virtual TurtleBot 3 Burger.

Fig. 3. Structure of Operating Room in Gazebo.

Fig. 4. Our Operating Room model with Turtlebot 3 burger.

B. Environment (Operating Room)

Using the Gazebo tool, we modeled our customized envi-
ronment and launched the TurtleBot 3 burger. Our environment
depicts that of a real-world operating room. Fig. 3 and Fig.
4 provide details of our operating room. It follows the main
principles of working room management and efficiency. These
factors include ensuring patient safety and optimal patient
outcome; providing surgeons with appropriate access to the
operating room; maximizing the effectiveness of the oper-
ating room utilization; staff and materials to reduce costs;
decreasing patient delays; and enhancing satisfaction among
patients; staff, and medical professionals. Medical equipment
and human models for the environment were sourced and later
modified from 3D Warehouse (a large dataset of simulated 3D
objects) and [18].

C. ROS and Gazebo

Robot Operating System (ROS) uses tools and libraries
necessary for writing software for robots and used in robotics
research and industry. The framework operates through a
publisher-subscriber interface and provides functionality like
hardware abstraction, localization, navigation, and visualiza-
tion. ROS works with Gazebo (our virtual simulator) through
plugins that provide the correct interface for messages, ser-
vices, and dynamic reconfigure.
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We conducted experiments in the modeled operating room
virtual environment with the various obstacles such as medical
equipment and humans. The mobile agent motioned into
this virtual environment to find the right navigation towards
its goal box. Codes were written and modified in Python
Language with Kinetic Kame as our Robot Operating System
and Gazebo 7.0 as our virtual simulator with Linux Ubuntu
16.04 Operating System.

V. METHODOLOGY

Using the agent, ROS, and Gazebo, we first trained and
further tested the agent with our modeled environment. This
technique provided the mobile robot with some learning and
explorative experience. Our methodology is as follows;

A. Training the Agent and Setting Hyper-parameters

We conducted experiments for the DQN algorithm with
different parameters but primarily the state, action, reward,
step size, and the discount factor. We trained the agent using
the source code package DQN from the ROBOTIS company
and its simulated environments. We trained the agent with
pre-modeled simulated environments for four different envi-
ronment scenarios. The first environment had no obstacles,
the second had four cylinders of static obstacles, the third had
four cylinders of moving barriers, and finally, the fourth had
a combination of collision walls and two moving obstacles.
The environments for training in Fig. 5. We also contributed
some code alterations to cater for the reward and penalty value
system in the Gazebo simulation.

We projected our results with a Q-value and cumulative
reward graph. The total reward graph represents the overall
reward value for each state when the mobile robot explores
and navigates in any of the four simulated environments. When
the reward value is below 0, it means the agent has collided
with a wall or medical object and therefore produces a neg-
ative reward (penalty). A positive reward indicates successful
navigation towards its goal target within a short period. The
Q-value graph presents the best value action for each episode
of navigation and exploration in the operating room.

We performed training for 3000 episodes with a learning
rate of 0.00025, an epsilon factor of 1.0, and a discount
factor of 0.99. After training, we transferred the learned agent
for testing. The Adam optimizer for the experiment accom-
modated sparser gradients and convergence with the mean
square error, which also represents the loss function. This
optimization tool also serves as a gradient descent approach
by working with a single sample each time, and usually mini-
batches.

B. Testing the Model in the Virtual Operating Room

We tested the training model in the virtual operating room
environment. We used a high and low learning rate and
discount factor values to measure the effectiveness of the
agent’s navigation towards the goal direction. The learning
rate is the extent to which new data dominates recent data.
A factor of 0 provides the agent with minimal exploration

(a) No obstacles (b) Static obstacles

(c) Moving obstacles (d) Combination obstacle

Fig. 5. Simulated environments (a) - (d) for training Turtlebot 3 burger.

Fig. 6. Positive Reward value graph after 7 episodes.

techniques in the simulated environment, whiles a factor of 1
engages the agent to examine the updated information, which
might not include prior-knowledge.

Adopting the two learning rates for the agent explores all
possible actions for each state and finds the one that is the
most rewarded for exploiting it in achieving its goal. The
discount factor maximizes the priority of future rewards. An
element value of 0 will consider only updated positive rewards,
while a factor approaching the value of 1 will employ the
agent in achieving a constant high positive reward [19]. These
two parameters are necessary for a successful future workflow
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in the operating room. Using a Keras sequential model, we
structured our neural network with two dense layers and a
linear activation layer.

To carefully monitor the agent’s progress, our graph dis-
played the reward and penalty value with the value of 1000 and
-500 being the chosen highest reward and penalty respectively
for each episode. The penalty value depicts the agent colliding
against a human, medical equipment, or a wall, while a reward
value expresses the agent achieving the success of reaching its
targeted goal.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

The chart in Fig. 7 explains the performance of the DQN
algorithm in our operating room environment. Fig. 6 accounts
for our initial results. After seven episodes of testing, the
agent achieved a positive reward in our environment when the
learning rate was 0.00025 with DQN. Although the agent took
more steps and a longer time towards its goal, it accumulated
a positive reward of 1000 after 500 episodes with a learning
rate of 0.5. This is attributed to the fact that the agent starts
to learn a new environment with a higher number of steps at
its initial stages and reduces as it achieves a positive reward.
We noticed negative reward values at early episodes of testing,
which accounts for exploration.

As presented in Fig. 8 and Fig. 9, the results exhibit that
as learning rate increases in value, the reward increases and
with increasing average Max-Q value. This result accounted
for the success in training the agent at a lower learning rate to
enable it to explore and exploit all actions in each state in the
four simulated environments. Moving into a new environment
(operating room) gives a lower chance of collisions and
therefore maximizes its goal target in most given states and
episodes based on its past learning experiences. A higher
reward indicates a better-navigated decision, and consequently,
the experiments show the higher reward at a learning rate
of 0.5. Table I provides further details. The maximum Q-
value is the level of intelligence of our neural architecture and
the increase in the average Max-Q value is the cumulative
reward for every increase in the episode. The instability of the
cumulative reward values is the effect of the trade-off between
exploration and exploitation.

Exploration occurs when the agent moves autonomously to
gain experience by moving in different directions and taking
actions that lead to its targeted goal. Exploitation exists when
the robot initially attains a penalty value from its last episode
and, based on its prior experience, would only aim at achieving
a goal instead of navigating and learning the environment. The
concept of Deep Reinforcement Learning depends on weight
update transfer. When the robot makes a decision based on
its sensors, the result of the information quickly transfers and
updates the neural structure. The input layer of the framework
contains weight decisions, and the output layer is the reward-
penalty value system, which updates according to the current
decision-making process.

Table II explains the comparison of the average time of
DQN with a globally known traditional method. Comparing

results with [20], the Deep Reinforcement learning method
approaches its targeted goal faster than SLAM because it
presents a faster learning update with deep neural networks.
The intelligent structure modeling of our DQN algorithm
facilitates the robotic structure to choose wise options for
steering in our virtual world. This robust learning update
engages the robot in making intelligent decisions without any
data input as compared with traditional methods. Another
reason is that DQN uses deep neural networks to account for
data associated uncertainties, and therefore the time taken to
build and learn maps is shorter than that in classical methods.

Fig. 7. Testing Results when learning rate is 0.00025.

TABLE I
COMPARISON OF DIFFERENT LEARNING RATES FOR DQN ALGORITHM

Algorithm
Parameters

Learning Discount Highest Cumulative
rate factor reward

DQN 0.01 0.99 3000

0.5 0.99 3800

TABLE II
AVERAGE TIME COMPARISON FOR AGENT TO REACH THE GOAL POSITION

Algorithm Average time (s)

DQN 75.3

SLAM 156.5
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Fig. 8. Rewards and Q-value graph with learning rate as 0.5.

Fig. 9. Rewards and Q-value graph with 0.01 learning rate.

VII. CONCLUSION AND FUTURE WORK

In this paper, we successfully deployed the DQN algorithm
in an operating room environment. We have discussed the
algorithm with the task of finding the best-navigated ac-
tion performed by the agent towards a positive reward in a
simulated operating room. One challenge of Reinforcement
Learning is the trial-and-error interaction with the environ-
ment, but the system of Deep Reinforcement Learning uses
its optimal policy to resolve this issue. The long-range time
dependency is another challenge of RL. Our algorithm deals
with this problem by introducing a time-out plan that provides
a lesser penalty value after excessive training for one episode.
The work of Deep Reinforcement Learning achieves input
information through a deep neural architecture, and its middle
and output layers provide decision-making actions for the
agent to deploy and consequently gain positive rewards. The
agent obtains a penalty when it does not achieve its targeted
goal. The large memory of the architecture continually updates
to include current poses and experiences while the layers cal-
culate the weight decisions to ensure a maximum cumulative
reward. The application of this concept with our modeled
simulated virtual operating room proves its advantages over
classical methods.

In our research, we used model-free algorithms to facilitate
efficient learning by the agent. We used the TurtleBot burger
3 for our research and analysis. This multifunctional agent has
a package system, used by a wide variety of companies for
education and research. We chose this agent because it is user
friendly and affordable. The system of the agent fits the model
of the software (Gazebo and ROS) that provides a connection
between them to carry out relevant research. The agent initially
trained in four different environments. In the first scenario,
although it stumbled on most collision elements, it achieved
a high reward after several episodes. The second and third
environments almost achieved similar results as the complexity
of the environment increased, and in this case, our neural
architecture updated decision weights continually to create a
policy for our agent. The fourth environment mimicked our
operating room, and we trained the TurtleBot 3 burger twice
for 3000 episodes each to provide the agent with enough
training experience for validation and testing.

During experimental work, we compared the optimal pa-
rameters, time rate, and efficiency with traditional methods.
The fastest convergence for our algorithm was with a learning
rate of 0.5 and a discount factor of 0.99. Workload minimized
by the agent will increase workflow in the operating room
and facilitate efficiency. A promising way for this work would
be to run more sophisticated experiments with other different
learning rates on the agent in the operating room environment.
Future work should also be on the performance of other
different RL algorithms on the environment. The application
of this work extends to solving pandemics in both developed
and developing countries to combat epidemics that prevent the
movement of locomotion. An example is the outbreak of an
infectious disease (COVID-19).
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There are abundant opportunities in intelligent navigation
areas that require the field of robotics to undertake tasks [21].
We envision a complex navigational system for outdoor med-
ical roles, especially for measuring vital signs and delivering
medications to patients as part of our improvement for real-
world simulation.
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