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Sparse trajectory data with non-second-by-second sampling intervals are common.
However, most carbon emission estimation models for vehicles require second-by-
second inputs. Additionally, some models ignore the emission generation principle, and
some have complicated inputs. To address these limitations, this study proposes a vehicle
carbon emission estimation method for urban traffic, based on sparse trajectory data. First,
a trajectory reconstruction method based on interpolation of acceleration distribution is
proposed. The results showed that the reconstructed trajectory was close to the real trajec-
tory, and the accuracy was 2–17% higher than that of other methods. Second, a carbon
emission estimation model that considers both the emission generation principle and fea-
sibility is proposed. The model with a goodness-of-fit of 0.887 had the best performance
compared to the other models. The emission estimation results of the reconstructed sparse
trajectories showed that the precision improved significantly for data with different fre-
quencies compared to that of other reconstruction methods, e.g., 9% higher at a 30 s sam-
pling interval.
� 2024 Tongji University and Tongji University Press. Publishing Services by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Carbon emissions have rapidly increased over the past 70 years and remain a major contributor to global climate change.
According to the International Energy Agency, carbon emissions from the transportation sector account for approximately
25% of the total emissions, and have become the second largest source of carbon emissions (International Energy Agency,
2021). Emissions from the transportation sector increase faster than those from other economic sectors (Sun et al., 2022,
Raymand et al., 2021), and among all transportation sectors, on-road vehicle emissions are an important source of emissions
(Mingolla and Lu, 2021). Therefore, carbon emissions from vehicle exhaust have garnered increasing attention in recent
years (Di Battista and Cipollone, 2016, He et al., 2018). Quantifying or estimating carbon emissions is vital for developing
better carbon mitigation strategies and policies (Grote et al., 2018).

With the widespread use of GPS navigation and positioning terminals, massive trajectory data can easily be obtained,
which facilitates the estimation of vehicular emissions. However, because of the high cost of second-by-second (SBS) trajec-
tory data acquisition, storage, and communication, common GPS devices in vehicles generally upload data at low frequen-
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cies, e.g., 10 s and 30 s (Chen et al., 2021, Quddus and Washington, 2015). This forms a sparse trajectory data record that
poses challenges in estimating emissions because the inputs of most emission estimation models for estimating individual
vehicle emissions generally require SBS vehicle operating data (Nam and Giannelli, 2005, Shafabakhsh et al., 2018, Zhang and
Ioannou, 2016). To estimate the emission based on sparse trajectory data, some researchers attempted to reconstruct the
trajectory, obtained the estimated SBS trajectory points (Sun et al., 2015, Hao et al., 2014), and finally calculated the emis-
sions based on the reconstructed SBS trajectory points. The most important foundation for the above method is trajectory
reconstruction, which directly affects the estimation precision. For different traffic parameter estimation or specific traffic
scenarios, there are various reconstruction or indirect derivation methods based on sparse trajectory data (Chen et al.,
2022). These methods can be divided into three main categories, which include smooth interpolation methods
(Venthuruthiyil and Chunchu, 2018), mixed interpolation methods combining with a priori traffic flow empirical value
(Chen et al., 2018), and models based on microscopic traffic flow and multi-source heterogeneous data (Xie et al., 2018).
The objectives of trajectory reconstruction can be divided into travel time estimation (Li et al., 2018, Qin et al., 2023) and
traffic status identification (Ma and Zhu, 2021, Wang et al., 2019). However, due to different objectives, the trajectory recon-
struction methods are difficult to migrate directly. To enhance the accuracy of emission estimation, the variation trend of
velocity or acceleration per second is crucial. For estimating travel time, improving the accuracy of travel time estimation
of unit trajectory segments is more critical than the accuracy of the instantaneous acceleration estimation. Most previous
studies used simple interpolation methods for vehicle carbon emission estimation. For example, they assumed that the
acceleration/deceleration values were constant (Yang et al., 2011) or varied linearly (Shan et al., 2018, Hao et al., 2016),
and used linear (Liu et al., 2013) or cubic spline interpolation methods (Chang et al., 2012, Li et al., 2019) to fill the trajectory
data. The trajectories reconstructed by these methods are usually stable and cannot capture changes in the vehicle status. In
particular, for urban traffic flow, for example, vehicles on arterials and collectors, the frequency and range of acceleration and
deceleration behaviors are much higher than those on expressways. The estimated acceleration was relatively stable based
on simple interpolation methods, resulting in a significant underestimation of the emissions. Additionally, some studies pro-
posed other methods such as reconstructing trajectory based on sequence decision to estimate emissions over a long dis-
tance or a long period (Wang et al., 2017), a traffic energy consumption model based on the macro–micro data (Shang
et al., 2023), and carrying out operating condition measurement experiments for specific vehicle types in particular areas
(Weng et al., 2017). There are also researches on estimating average speed between two consecutive timestamps by map
matching algorithm to approximate the instantaneous speed (Liu et al., 2019) or reconstructing an individual trip chain
through road average speed and speed correction factors (Liu et al., 2023). Most of these aforementioned studies have lim-
itations in the scope and conditions of application.

Another key issue in estimating carbon emissions based on sparse trajectory data is the determination of the estimation
model. The United States and some countries in Europe were the first to realize the importance of quantifying emissions, and
many studies have been conducted on establishing vehicle emission estimation models since the 1950s. In recent years,
many typical models have been improved and widely used worldwide, such as MOBILE (EPA, 2003), MOVES (U.S.
Environmental Protection Agency, 2021), COPERT (Ntziachristos et al., 2009), EMFAC (EMFAC, 2006), and IVE (Davis et al.,
2005). Most of these models are aimed at estimating large-scale emission inventories of road networks, rather than individ-
ual vehicles. The shortcomings of models that can estimate micro-level emissions, i.e., individual vehicle emissions, are as
follows. First, some of them were based on data from limited driving cycles, which were different from the real driving sit-
uations on roads (Chindamo and Gadola, 2018). Second, the inputs of somemodels ignored the emission generation principle
and were only based on speed and acceleration, which would result in poor interpretability of the model (Rakha et al., 2004).
Some other models have specifically been developed for estimating micro-level emissions that consider the physical princi-
ple of motor vehicle emission generation, for example, VERSIT+ (Smit et al., 2007) and CMEM (Scora and Barth, 2006). How-
ever, such models generally have complicated inputs, and the internal engine operating data of each vehicle cannot be
obtained easily. To some extent, using trajectory data has a higher value than using instantaneous vehicle engine operating
data because trajectory data are easier to collect in practice. Most of the literatures on vehicle emission estimation in recent
years are still based on these aforementioned models, such as using the COPERT model to estimate emissions from urban
roads or highways (Lejri et al., 2018), estimating emissions of both individual vehicle and a network area based on COPERT
and GPS big data (Kan et al., 2018), simulating trajectory data with SUMO and calculating mixed traffic flow emissions with
VT-Micro model (Zhao et al., 2022), estimating road emissions based on data from traffic radars and video-cameras and
MOVES (Xu et al., 2018), and some application studies of CMEM for estimating vehicle emissions (Pathak et al., 2016;
Turkensteen, 2017).

Based on the above limitations, this study aims to achieve the following objectives:

(1) To propose a reconstruction method for sparse trajectory data based on interpolation of acceleration distribution. The
data of each point between the two given trajectory points are expected to be estimated as accurately as possible,
which is the foundation of emission estimation.

(2) To establish a vehicle carbon emission estimation model based on SBS trajectory data, considering both the emission
generation principle and feasibility.

The remainder of this paper is organized as follows. The second section presents the data-preparation process. The third
section describes the reconstruction method for sparse trajectory data based on interpolation of acceleration distribution
2
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and the estimation model for vehicle carbon emissions. The fourth section presents the numerical results through a case
study. Finally, the discussion and concluding remarks are presented in the fifth section.

2. Data preparation

2.1. Data collection

A large amount of SBS vehicle trajectory and carbon emission data were collected between February and July 2022 in sev-
eral cities in northern, central, and southern China. As the research object of this study is urban traffic flow, the data of vehi-
cles driving on arterials and collectors were first filtered by road network matching technology based on the position
information. Collecting field data from roads has a significant advantage over collecting data from a few driving cycles. This
is because it is difficult to cover the entire vehicle’s operational regime with only a few driving cycles. The vehicles in this
experiment were 13 light-duty vehicles, and the duration of each vehicle was more than 90 min. The total data collection
time and total distance were 24.5 h and 834 km, respectively. The data collection information is shown in Table 1.

To collect the data, the on-board diagnostics (OBD) device was connected to the OBD interface of the vehicle to export all
vehicle-running data files. The intelligent terminal OBD device simultaneously collected the SBS longitude, latitude, speed,
and other trajectory data of the vehicle, as well as the instantaneous fuel consumption. Carbon emissions were directly con-
verted from the fuel consumption using the chemical equation of fuel combustion. By connecting to the vehicle OBD inter-
face directly, the most precise vehicle operation data were obtained, excluding external factors. Additionally, acceleration
data were not directly collected, but were calculated using the instantaneous speed.

2.2. Cutting and classifying the trajectory pieces

Trajectory reconstruction is essential for estimating the emissions based on sparse trajectory data. The objective is to
obtain the acceleration of each point in the sparse trajectory, given the starting and ending trajectory points. Assuming that
there is no significant difference between the driving patterns for SBS and sparse trajectory data, the acceleration distribu-
tion of the SBS trajectory data would be similar to that of the sparse trajectory. Thus, the acceleration distribution estimated
based on the SBS trajectory data can support sparse trajectory reconstruction. Given that the sampling frequency of the
sparse trajectory is r s, the SBS trajectory is cut into different pieces at the same interval (r s). Subsequently, because similar
starting and ending driving characteristics, such as the speed value and range, might have the same acceleration distribution,
the pieces are classified into bins. The detailed steps are as follows.

(1) The trajectory piece sequence was cut. The SBS trajectory data were cut at the r s interval. For example, if r is equal to
three, then the 1-2-3-4 s and 4-5-6-7 s data form a trajectory piece, respectively.

(2) Trajectory pieces were then classified. The difference between the ending speed v rþ1 and the starting speed v1 (i.e.,
v rþ1 � v1) of the piece forms the basis for division. First, pick out all trajectory pieces wherein the vehicle runs at a
speed standard deviation of less than 1.5 m/s. Second, the speed of each piece was calculated to obtain the upper-
bound vr;max and lower-bound v r;min. Third, all the trajectory pieces were divided based on vr;max and vr;min. If the result
is v rþ1 � v1 P v r;max, the piece is defined to be in a state of unsteady acceleration (UA). If the result is v rþ1 � v1 6 v r;min,
the piece is defined to be in a state of unsteady deceleration (UD). If the result is v r;min < vrþ1 � v1 < vr;max, the piece is
defined to be in a state of relative steady speed (SS).
Table 1
Data collection information.

Vehicle
ID

Engine Displacement
(L)

Vehicle Curb Weight
(kg)

Experimental
Date

Valid Duration
(min)

Travel Range
(km)

Location

1 2.0 1456 2022/2/12 100 62 Shanxi province
2 1.6 1174 2022/3/22 115 65 Shanghai
3 1.6 1581 2022/6/29 99 61 Liaoning province
4 1.5 1276 2022/6/29 96 62 Liaoning province
5 1.5 1195 2022/6/30 92 52 Liaoning province
6 1.6 1343 2022/6/30 99 44 Liaoning province
7 1.5 1335 2022/6/30 120 76 Guangxi province
8 1.4 1445 2022/7/1 122 69 Liaoning province
9 2.0 1540 2022/7/1 111 69 Liaoning province
10 1.5 1590 2022/7/2 102 56 Liaoning province
11 1.5 1315 2022/7/2 124 59 Liaoning province
12 1.6 1444 2022/7/3 158 82 Liaoning province
13 1.5 1519 2022/7/3 136 77 Liaoning province
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(3) Trajectory pieces were further divided into bins. For the SS state, binning is based on the average speed of a piece with
a step length of s km/h. The acceleration distributions under different average speed ranges will differ. For example,
when the average speed is low, the vehicle has a high probability of idling, leading to a higher zero acceleration ratio.
As the average speed increases, the frequency of the acceleration and deceleration behaviors is probably higher. Thus,
the acceleration distribution is more dispersed. The basis of binning for UA and UD is v1 and vrþ1 � v1. v rþ1 � v1

reflects the pattern of speed fluctuation, which directly determines the acceleration distribution, and the starting
speed v1 affects the range of acceleration and deceleration. Thus, both v1 and v rþ1 � v1 constitute to the basis of
the binning division.

(4) The Kolmogorov-Smirnov (K-S) test was conducted to test the significance of the difference in the acceleration distri-
bution between different bins. After the binning process, the significance of the difference between every pair of bins
needs to be checked. This step is conducted to ascertain whether it is reasonable to calculate the distribution function
separately or whether the two bins should be combined when no difference is observed. For SS, UA, and UD, pairwise
testing was conducted between every two bins. The null hypothesis of the K-S test H0 is as follows: ‘‘There is no sig-
nificant difference in the acceleration distribution between the two bins.” The distribution functions were set as Fi xð Þ
and Fj xð Þ, respectively. The statistic of the test is then expressed in Eq. (1):
Di;j ¼ max Fi xð Þ � Fj xð Þ�� �� ð1Þ
The p-value is calculated. If p < 0.05, the H0 was rejected. Otherwise, the two bins were merged.
p ¼ P Di;j > c að Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ n
m � n

r( )
ð2Þ
where c að Þ is a constant corresponding to the confidence level a. m and n represent the sample sizes of bins i and j,
respectively.
2.3. Variable description for the estimation model

The carbon emission estimation model was established based on the collected SBS trajectory data. First, the data were
cleaned to reduce the noise of the raw data, including consistency checks, invalid data deletion, and rectification of missing
values to ensure model quality. There were 80,020 valid pieces of data after cleaning. Sensitivity analysis was conducted on
the data sample size, which confirmed that significant variables and coefficients remained stable when the data sample size
reached 50,000. The total sample size exceeded the threshold.

Second, the independent and dependent variables were determined. The vehicle specific power (VSP) is the ratio of the
rated power of the vehicle engine to the maximum design total mass. Many related studies and existing estimation models
have demonstrated a direct connection between the VSP and emission estimation (Song and Yu, 2009, Zhang et al., 2019,
Song and Yu, 2011). VSP is a comprehensive indicator for evaluating the power performance of a vehicle, which reflects
the emission generation principle and can be indirectly calculated using common traffic parameters (Jimenez-Palacios,
1998). This helps improve the precision and interpretability of the input parameters of the emission model. The formula
is as follows:
VSP ¼ vð1:1 � aþ 0:132Þ þ 0:000302v3 ð3Þ
where v is the instantaneous speed (m/s) and a is the instantaneous acceleration (m/s2), which can be positive, 0, or negative.
Therefore, for the proposed estimation model in this study, the instantaneous speed and acceleration collected directly from
the trajectory data and the indirectly calculated VSP are the independent variables. The instantaneous carbon emission rate
is the dependent variable.

Third, because large masses of raw data are discrete, the direct fitting regression effect is presumed to be poor. Therefore,
the raw data can be divided into several bins at small intervals according to the speed and acceleration parameters. Specif-
ically, a binning procedure is created to reduce the number of raw data points. The emissions of all vehicles in the same
speed/acceleration bin are averaged to generate a single average emission estimate. The division method is determined
based on the value range and sample size of the data. The sample size within each bin should not be too small or significantly
different. In this study, the speed bins included speeds ranging from 0 to 80 km/h at increments of 2 km/h, while acceleration
bins included accelerations ranging from �3.3 to 3.3 m/s2 at increments of 0.3 m/s2.
3. Methodology

As shown in Fig. 1, there are two essential parts of estimating vehicle carbon emissions based on sparse trajectory data.
These include the trajectory reconstruction and estimation regression models.
4
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3.1. Sparse trajectory reconstruction method

This reconstruction method uses the acceleration distribution as the core guideline because general simple interpolation
methods ignored the kinematic principles of the vehicle. The constructed stable trajectory cannot reflect the stochastic char-
acteristics of the change in vehicle speed, thereby underestimating the emissions. Acceleration is the key influencing factor
in emission estimation, which determines the trend of speed variation and is also an independent variable of the VSP param-
eter. VSP is closely related to emission, and it is sensitive to the variation of acceleration. Therefore, directly estimating accel-
eration not only helps to reproduce the real trajectory with stochastic acceleration and deceleration behaviors, but also
affects the precision of emission estimation.

3.1.1. Establishing the acceleration distribution model
The acceleration distribution reflects the probability of the occurrence of different acceleration values. Therefore, the

probability density function f ðxÞ was used to describe the acceleration distribution under different operating conditions.
The integration of f ðxÞ in the interval (a, b) is the probability of occurrence of the random variable X in this interval.
P a < X < bf g ¼
Z b

a
f ðxÞdx ð4Þ
The 11 comprehensive and most commonly used distribution functions were selected to fit the acceleration data contained
in each bin of SS, UA, and UD to the probability density functions. The probability density functions included the norm,
expectation, Pareto, Weibull, T, extreme, gamma, log-norm, beta, uniform, and log-gamma functions. The root mean square
error (RMSE) and goodness-of-fit (R2) were used to evaluate the fitting effect. The RMSE was calculated using Eq. (5), which
reflects the degree of the fit. The smaller the RMSE, the better is the fitting result. R2 was calculated as shown in Eq. (6). The
closer the R2 value to 1, the better is the fitting result.
RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xm
i¼1

yi � ŷið Þ2
vuut ð5Þ

R2 ¼ ESS
TSS

¼
Pn

i¼1ðŷi � y
�Þ2Pn

i¼1ðyi � y
�Þ2

ð6Þ
The distribution function with the best fit in each bin was selected as the final acceleration distribution function to estimate
the acceleration of each point in the sparse trajectory.
Fig. 1. The two essential parts of the emission estimation method.
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3.1.2. Reconstructing the sparse trajectory
For the entire sparse trajectory sequence containing N trajectory pieces with a sampling interval r s, the speed at the

sparse point is known for any trajectory piece n ð 1 6 n 6 NÞ. The time-series number set of the trajectory sequence with
known speed is 1; r þ 1;2r þ 1; :::;nr þ 1f g, and the known speed set is v1;v rþ1;v2rþ1; :::;vnrþ1f g . According to the estab-
lished acceleration distribution model, the acceleration can be estimated at each point in the entire sparse trajectory
sequence. This process is illustrated in Fig. 2.

The specific steps are as follows:

(1) The trajectory pieces were classified.
a. Classifying each trajectory piece into SS, UA, and UD. For piece n, the difference between the ending speed vnrþ1 and the

starting speed v ðn�1Þrþ1 (i.e., vnrþ1 � v ðn�1Þrþ1; ð 1 6 n 6 NÞ) was calculated. If the result is
v r;min < vnrþ1 � v ðn�1Þrþ1 < v r;max, the piece is in the SS state. If the result is vnrþ1 � v ðn�1Þrþ1 P v r;max, the piece is in
the UA state. If the result is vnrþ1 � v ðn�1Þrþ1 6 v r;min, the piece is in the UD state.

b. Dividing the pieces into bins. Pieces in the SS state can be divided into corresponding bins based on the average speed
vnrþ1þvðn�1Þrþ1

2 . Pieces in the UA and UD states can be divided into corresponding bins based on v ðn�1Þrþ1 and
vnrþ1 � v ðn�1Þrþ1.

(2) The trajectory data were estimated.
a. Acquiring acceleration distribution. Each piece was identified as belonging to a bin and the established acceleration dis-

tribution model was acquired.
b. Estimating acceleration at each point. Acceleration was estimated at each point using the acceleration distribution

model.
c. Calculating the speed at each point. Based on the acceleration data and the known speed at the starting point, the speed

was calculated point by point.
(3) The constraints were verified.

The estimated acceleration and speed were validated to ensure that they conformed to the following constraints:

a. The validity of speed. The speed at all points of v i; ðn� 1Þr þ 1 < i 6 nr þ 1ð Þ, except the starting point, was calculated
from the acceleration; thus, there was a possibility of error. Therefore, speed v i must satisfy the following constraint:
Fig. 2. The process of reconstructing trajectory.
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v i 2 0;Vmax½ � ð7Þ

where Vmax is the speed limit on the roads.

b. Relationship between speed and acceleration. The acceleration fluctuation range at different instantaneous speeds is
inconsistent. Therefore, the collected data were analyzed to determine the relationships between the maximum accel-
eration and instantaneous speed, and the minimum deceleration and instantaneous speed. Drivers tend to adjust their
speed significantly to achieve the desired speed at a lower speed; thus, the acceleration tends to fluctuate more. How-
ever, at a higher speed, the driver has already achieved the desired speed; therefore, the fluctuation range is smaller
for the sake of comfort. The results based on the large amount of collected trajectory data were as follows. R2 values
were 0.92 and 0.90 for Eq. (8) and Eq. (9), respectively.
av;max ¼ �0:5422 ln vð Þ þ 3:33 ð8Þ

av;min ¼ 0:5422 ln vð Þ � 3:33 ð9Þ

where av ;max and av ;min represent the maximum acceleration andminimum deceleration at v , respectively, and the unit of v is
km/h.

According to av ;min and av ;max, there is a constraint for ai when the speed is v i:
ai 2 av i ;min; av i ;max
� �

; ðn� 1Þr þ 1 6 i 6 nr þ 1ð Þ ð10Þ
c. Change trends of acceleration/deceleration. This constraint is used to avoid the non-conformity of the estimated accel-
eration/deceleration trend of consecutive points to reality. Using the collected data, the pattern of the difference
between the accelerations at intervals of 0, 1, and 2 s was calculated and analyzed. The results are as follows:
aiþ1 � ai 2 �2:22;þ2:22½ � ð11Þ

aiþ2 � ai 2 �2:78;þ2:78½ � ð12Þ

aiþ3 � ai 2 �3:89;þ3:33½ � ð13Þ
d. Speed of ending points. At the end of each piece, the true ending speed v true
nrþ1 was known, and the estimated ending

speed vnrþ1 was calculated based on the true starting speed and acceleration at each point. The threshold of the dif-
ference was assumed to be Vthre. If the result is vnrþ1 � v true

nrþ1

�� �� 6 Vthre, the estimated value is accepted; otherwise, the
test is considered to have failed.

(4) All the aforementioned tests and constraints must be simultaneously satisfied to obtain a valid trajectory reconstruc-
tion. Otherwise, the acceleration is estimated again point by point. If one of the above constraints is still not satisfied
after several repetitions, e.g., after 1,000 repetitions, a randomly selected piece from the known trajectory pieces is
used.

3.2. SBS carbon emission estimation model

A regression model for estimating vehicle emissions was established based on the collected SBS trajectory data. Regres-
sion models, such as multiple linear regression, curve estimation, and polynomial regression, can be used to establish the
relationship between the speed, acceleration, VSP, and carbon emission rate. Specifically, basic linear regression is the sim-
plest form of regression when the independent variables are multivariate, and this method works well sometimes. Consid-
ering that VSP can be indirectly calculated from speed and acceleration and is closely related to the emission, the curve
estimation (including linear, quadratic, and cubic terms) using only VSP is also appropriate. Additionally, multivariate poly-
nomial regression can handle considerable nonlinear problems and plays an important role in regression analysis because
any function can be approximated using a polynomial.

As the dependent variable carbon emission rate must be positive, it is more reasonable to consider the logarithmic form of
the carbon emission rate when fitting. The forms of the basic linear regression and curve estimation are as follows:
ln ER ¼ b0 þ b1 � v þ b2 � aþ b3 � VSP ð14Þ

ln ER ¼ b0 þ b1 � VSP ð15Þ

ln ER ¼ b0 þ b1 � VSP þ b2 � VSP2 ð16Þ
7
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ln ER ¼ b0 þ b1 � VSP þ b2 � VSP2 þ b3 � VSP3 ð17Þ
where, ER is the instantaneous carbon emission rate (g/s). b0,b1,b2, and b3 represent regression model coefficients.
VT-Micro, a typical statistical regression emission estimation model, is a polynomial regression model for speed and

acceleration that does not consider VSP as an independent variable, and its regression form is expressed in Eq. (18):
ln ER ¼

P3
i¼0

P3
j¼0

Li;j � v i � aj
� �

for a P 0

P3
i¼0

P3
j¼0

Mi;j � v i � aj
� �

for a < 0

8>>>><
>>>>:

ð18Þ
where Li;j and Mi;j represent the regression model coefficients at ‘‘speed to the power of i” and ‘‘acceleration to the power of
j.” v is the instantaneous vehicle speed (km/h) and a is the instantaneous vehicle acceleration (km/h/s). A piecewise function
is developed for positive and negative accelerations because the vehicle exerts power during positive acceleration, whereas it
does not exert power in the negative acceleration range.

However, according to the working principle of motor vehicles, in addition to the acceleration and deceleration states, the
engine condition in the idle mode is also significantly different. A better method should be considered to divide the vehicle
operation into three states: deceleration, acceleration, and idling. The idling state refers to v < 1:6km=h, whereas
v P 1:6km=h and a P 0 and v P 1:6km=h and a < 0 are the acceleration and deceleration states, respectively. In this
study, a polynomial regression model was established, as expressed in Eq. (19):
ln ER ¼
X3
i¼0

X3
j¼0

ðLi;j � v i � ajÞ þ
X1
l¼0

X1
m¼0

X3
n¼1

ðMl;m;n � v l � am � VSPnÞ ð19Þ
where Li;j represent the regression model coefficients at ‘‘speed to the power of i” and ‘‘acceleration to the power of j,” and
Ml;m;n represents the regression model coefficients at ‘‘speed to the power of l,” ‘‘acceleration to the power of m,” and ‘‘VSP to
the power of n.” Each segment of the piecewise function requires its fitting process. As the equation contains a large number
of variables, the significant variables can be filtered into the final regression model using the forward method (Härdle and
Simar, 2019).

To conduct different fitting processes, the choice of the regression model, necessity of the piecewise function, establish-
ment of the piecewise function, and design of the binning rules for raw data were considered. The index used to determine
the fitting effect was the goodness-of-fit (R2). The larger the R2 value, the better is the fit. Simultaneously, regression model
proposed in this study was compared with commonly used models to verify whether its effectiveness.
4. Results

4.1. Results of the trajectory reconstruction method

The trajectory reconstruction was based on a real trajectory sequence of 120 s. The sampling intervals were 5, 15, and
30 s. The interpolation method of acceleration distribution (Method I), linear interpolation (Method II), and cubic spline
interpolation (Method III) were conducted. The results are shown in Fig. 3. If the differences between the estimated and true
values of speed are within 5, 10, and 20% of the true values at sampling intervals of 5, 15, and 30 s, respectively, the trajectory
point is considered to be estimated relatively accurately. In this study, the proportion of approximately accurate estimated
points among all trajectory points of the sequence is called the accuracy of the trajectory reconstruction. The accuracy of the
trajectory reconstruction results is shown in Fig. 4.

Fig. 3 shows that the trajectories reconstructed by the linear interpolation and cubic spline interpolation methods were
relatively stable. The trajectory points were directly connected by smooth lines. When the sampling frequency was high
(5 s), the trajectories reconstructed by the three methods differed less from the real trajectories from the perspective of intu-
itive observation. This is because there were sufficient known points that can be used to constrain the trends of the recon-
structed trajectories. The accuracy of the trajectory reconstruction results of Method I was 2.5 and 5.8% higher than those of
Methods II and III, respectively. When the sampling frequency was slightly lower (15 s), the trajectories reconstructed by the
other two methods for unknown points were not in line with the real situation. The trajectory reconstructed using the
method proposed in this study can satisfactorily reproduce the real trajectory. The accuracy of the trajectory reconstruction
of Method I was 62.8%, which was higher than those of the other two methods. When the sampling frequency was very low
(30 s), the other two methods almost completely lost the function of trajectory reconstruction. Although the method pro-
posed in this study cannot precisely reproduce the acceleration and deceleration over a period of 30 s, it can still partly
reflect the stochastic behaviors of acceleration and deceleration. The accuracy of the trajectory reconstruction results of
Method I was 17.3% and 7.4% higher than those of Methods II and III, respectively. Fig. 4 shows that the accuracy of the tra-
jectory reconstruction decreases as the sampling interval increases because the sparser the sampling interval, the more dif-
ficult it is to accurately estimate each point.
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Fig. 3. Reconstructed trajectory results.

Fig. 4. The accuracy of trajectory reconstruction results.
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4.2. Results of the SBS emission estimation model

A large number of fitting processes have been attempted based on different regression models, piecewise function estab-
lishment methods, and data binning methods. Representative and significant fitting results with good effects (R2 > 0.6) are
summarized according to the R2 values, as presented in Table 2.

Compared with MOVES (the most widely used emission estimation model) and VT-Micro (the typical statistical regres-
sion model), the results of Model 6 proposed in this study showed the best performance (R2 = 0.887). Model 1 was a poly-
nomial regression model using discrete raw data after data cleaning, without establishing a piecewise function or dividing
the data into bins (R2 = 0.695). Model 2 was fitted with a piecewise function that included three states: deceleration, idling,
and acceleration (R2 = 0.723). Models 3 and 4 divided the data into several bins to reduce the number of raw data points.
Model 3 was based on the curve estimation with VSP (R2 = 0.801), and Model 4 was based on polynomial regression with
speed, acceleration, and VSP (R2 = 0.831). Models 2, 3, and 4 show some improvement in the goodness-of-fit compared to
Model 1, which reflects the necessity of piecewise function and data binning. Therefore, both Models 5 and 6 were operated
accordingly, and the former’s piecewise function included only two states, i.e., deceleration and acceleration, similar to the
VT-Micro model. Model 6 was divided the most, i.e., into three states, and the results showed that it had the best fit. Further
9



Table 2
Regression results table.

Model Piecewise function Binning Regression result R2

1 No No ln ER ¼ b0 þ b1v þ b2va2 þ b3a2 þ b4VSP þ b5v � VSP þ b6VSP
3 0.695

2 Yes
(III#)

No ln ER ¼
bdec0 þ bdec1 v2 þ bdec2 a2 þ bdec3 VSP þ bdec4 v � VSPþ

bdec5 v ; deceleration
bacc0 þ bacc1 VSP þ bacc2 v � a � VSP þ bacc3 v � aþ

bacc4 v3 � a3; acceleration

8>><
>>: 0.723

3 No Yes ln ER ¼ b0 þ b1VSP þ b2VSP
2 þ b3VSP

3 0.801

4 No Yes ln ER ¼ b0 þ b1VSP þ b2v þ b3VSP
3 þ b4va2 þ b5a 0.831

5 Yes
(II*)

Yes
ln ER ¼ bdec0 þ bdec1 v2 þ bdec2 VSP þ bdec3 v � VSP; deceleration

bacc0 þ bacc1 VSP þ bacc2 VSP2 þ bacc3 v þ bacc4 v3; acceleration

(
0.864

6 Yes
(III#)

Yes **

ln ER ¼

bidling0 ; idling
bdec0 þ bdec1 v2 þ bdec2 a2 þ bdec3 VSP þ bdec4 v2 � a2 þ bdec5 v � VSPþ

bdec6 v ; deceleration
bacc0 þ bacc1 VSP þ bacc2 VSP2 þ bacc3 v3 þ bacc4 v þ bacc5 v3 � a3þ

bacc6 v � a2 þ bacc7 a; acceleration

8>>>>><
>>>>>:

0.887

7 VT-Micro 0.845
8 MOVES 0.658

* II: states including deceleration and acceleration.
# III: states including idling, deceleration, and acceleration.
** the coefficients are:bidling0 ¼ - 0:4987;bdec0 ¼ �0:443;bdec1 ¼ 0:001;bdec2 ¼ 0:011; bdec3 ¼ 0:016;bdec4 ¼ 0:001;bdec5 ¼ 0:001;bdec6 ¼ 0:013; bacc0 ¼ 0:065;

bacc1 ¼ 0:142;bacc2 ¼ �0:004;bacc3 ¼ 0:00003794; bacc4 ¼ �0:025;bacc5 ¼ 0:0000899; bacc6 ¼ �0:013;bacc7 ¼ 0:069.
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comparing other evaluation indexes of Model 6 and VT-Micro model, the mean absolute percentage errors (MAPEs) were
0.16 and 0.20, respectively. The root mean squared errors (RMSEs) were 0.38 and 0.41, respectively. These results demon-
strated the significance of state subdivision and considering VSP to improve accuracy. Additionally, the comparison of the
results between Model 5 and VT-Micro model, also directly demonstrated the necessity of VSP as an independent variable
for emission estimation.
4.3. Emission estimation results based on sparse trajectory data

Using 30 real trajectory sequences of 120 s on arterials and collectors, the sampling intervals were 5, 15, and 30 s, respec-
tively, and one trajectory sequence included several pieces with the corresponding sampling intervals. Trajectory reconstruc-
tion was conducted based on the interpolation method of acceleration distribution (Method I), linear interpolation (Method
II), and cubic spline interpolation (Method III). Subsequently, carbon emissions were estimated by the SBS model using the
reconstructed trajectories. The emission estimation comparison results are listed in Table 3.

The results presented in Table 3 indicate that the estimation of the method based on interpolation of acceleration distri-
bution is better than that of the other two methods for all three sampling intervals. The results of 30 reconstructed trajectory
sequences of 120 s show that the MAPEs of the total emission estimation of the sequences of Method I were 0.23, 1.07, and
1.52%, respectively, which were significantly lower than those of Methods II and III. As expected, the underestimation of
emissions of the other two methods was significant, because the reconstructed trajectories were relatively stable. Notably,
the sparser the sampling interval, the more the simple interpolation methods underestimated the emission. Considering tra-
jectory pieces of 5, 15, and 30 s, respectively, as the analysis objects, Method I also showed the best performance. The MAPEs
of this method were 3.51, 3.60, and 4.45%, while those of the other two methods were 4.30, 5.03, and 11.25% at intervals of 5,
15, and 30 s. The method proposed in this study has strong robustness, according to the emission estimation results at dif-
ferent sampling frequencies.
Table 3
Emission estimation comparison results.

Sampling interval 5 s 15 s 30 s

Method I* II III I* II III I* II III
MAPE of sequences (%) 0.23 3.28 2.75 1.07 6.13 4.83 1.52 11.07 10.60
MAPE of pieces (%) 3.51 4.57 4.30 3.60 6.47 5.03 4.45 12.56 11.25

* The proposed method.
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5. Conclusions

Sparse trajectory data are more common than SBS trajectory data. However, there is a contradiction between the SBS
input requirements of most emission estimation models and the difficulty in acquiring SBS data. Additionally, the existing
carbon emission estimation models for motor vehicles have various limitations regarding their practical applications. Some
models ignore the emission generation principle, and some studies have complicated inputs. To address these limitations,
this study proposed a vehicle carbon emission estimation method for urban traffic based on sparse trajectory data.

First, a reconstruction method for sparse trajectory data based on interpolation of acceleration distribution was proposed.
The estimated SBS trajectory data are the foundation of emission estimation. The results showed that the trajectory recon-
structed by the method proposed in this study can better reproduce the real trajectory at different sampling frequencies than
other interpolation reconstruction methods. Second, a motor vehicle carbon emission estimation model based on SBS trajec-
tory data was proposed. The inputs of the model are convenient for acquisition, and the emission generation principle is con-
sidered. The results showed that the model performed best (R2 = 0.887) compared to other commonly used models.

The emission estimation results for the sparse trajectory data of the case study showed that the method proposed in this
study can improve the emission estimation precision at both low and high sampling frequencies. Compared to those of other
interpolation methods, the precision of the proposed method is approximately 9% higher for low-frequency data and 2%
higher for high-frequency data. These results demonstrate that the proposed method is robust.

However, this study has some limitations. The research object of this study is individual vehicle in urban traffic flow; thus,
further detailed analyses and demonstrations are required for expressways. Additionally, factors such as traffic volume and
traffic mix are worth being explored on a more macroscopic level in future research. The sparse trajectories for reconstruc-
tion contain fixed sampling intervals in this study, whereas unstable uploading of trajectory data may result in unequal
intervals in reality. Solving this problem will help expand the generalizability of this method.
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