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Abstract—The main objective paper is to make an empirical
analysis of the effect of various unstated spatial goal constraints
on reinforcement learning policy for the “reacher” task in the
Robotic Scrub Nurse (RSN) application. This “reacher” task is
an essential part of the RSN manipulation task, such as the
task of picking, grasping, or placing the surgical instruments.
This paper provides our experimental results and the evaluation
of the “reacher” task under different spatial goal constraints.
We researched the effect of this unstated assumption on a
reinforcement learning (RL) algorithm: Soft-Actor Critic with
Hindsight Experience Replay (SAC+HER). We used the 7-DoF
robotic arm to evaluate this state-of-the-art deep RL algorithm.
We performed our experiments in a virtual environment while
training the robotic arm to reach the random target points.
The implementation of this RL algorithm showed a robust
performance, which is measured by reward values and success
rates. We observed, these reinforcement learning assumptions,
particularly the unstated spatial goal constraints, can affect the
performance of the RL agent. The important aspect of the
“reacher” task and the development of reinforcement learning
applications in medical robotics is one of the main motivations
behind this research objective.

Index Terms—“reacher” task, spatial constraints, Robotic
Scrub Nurse, Reinforcement Learning, Soft-Actor Critic, Hind-
sight Experiment Replay

I. INTRODUCTION

Robotics research in the medical field is very challenging
due to several uncertainties / unexpected events in the envi-
ronment. The hospital has various workflows and procedures
for each room, depending on the function and purpose of the
room. For example, workflows and procedures in an operating
room are different from workflows in a sanitary room. We also
need to simulate a medical robot in an artificial environment
to confirm its safety, one of the crucial aspects of medical
robotics [1]. However, the involvement of medical robotics
is undoubtedly helpful for our medical workers. Some of the
works in medical robotics include application in an operating
room [2], [3], a robotic arm with laparoscopic instruments [4],
Da Vinci R, the most famous surgical robotic since the past
decade [5], Robotic Scrub Nurse (RSN) [6], “pick and place”
robotic system for surgical instruments by Peenelope CS [7]
and Y. Xu [8], and Versius robotic arm for use in gynecology,
upper GI surgery, collateral, and urology application [9]. The
role of medical robotics in hospitals is essential and can
reduce the burden of medical staff. The outbreak of the new

Fig. 1. Common configuration of the surgical room with scrub nurse (SN)
staff, anesthetist, and surgeon. Adapted from [10]

virus (Covid-19) exposes an increasing demand for qualified
medical staff in hospitals and clinics. We understand the need
and importance of hospital automation to reduce the workload
and improve the efficiency in hospitals and clinics. One of the
solutions to address this issue is to take over the simple and
repetitive task of a nurse (i.e., scrub nurse) into an automatic
task. The scrub nurse works in the surgery / operating room
(as displayed in “Fig. 1”) to manage surgical instruments such
as scalpels, retractors, hemostats, scissors, forceps, and needle
holders. These scrub nurse works could be programmed into
a robot called Robotic Scrub Nurse (RSN).

The robot scrub nurse (RSN) system can help medical
staff to handle the surgical instruments and increase the
effectiveness and efficiency in the operating room [10]. The
RSN manipulation task mainly divided into grasping tasks
and reaching tasks to control the flow of surgical instruments.
There are many previous works on the grasping task in the
robotic arm, as discussed in [12]–[14]. They developed a
method for object picking to grasp and locomote certain
objects. In this study, we focused on the “reacher” task
because it is the fundamental structure of all kinds of robotic
manipulation tasks, including handling the instruments in the
operating room [2], [3]. Some prior research of the “reacher”
task used motion planning algorithm [11], supervised learn-
ing methods, or even manually programmed or “scripted”
robot. However, the motion planning approaches have some
weaknesses in dealing with uncertainties in the real-world
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environment, whereas the supervised learning methods have
difficulties in training the agent due to the lack of training data.
O.I. Borisov et al. [15] discussed the method of controlling
a robotic arm with trajectory planning, path planning, and a
tracking system used in robotic applications. L.Barbieri et al.
designed a master-slave approach to control the robotic arm to
reach some predetermined target points [16]. These methods
are very dependent on the target position or the determined
trajectories and have difficulty if we change the target po-
sition or deal with an unseen target position. Moreover, the
utilization of reinforcement learning reveals promising results
for the manipulation task, as shown in the previous works [17],
[18].

In reinforcement learning, the agent learns the learning
policy about how to choose the best action from its interaction
with the environment through a reward / penalty system. The
interaction means, the agent chooses and performs an action
for each time step at the reinforcement learning environment.
Then, the environment reacts to the action and moves to
the next state and gives a scalar signal to the agent named
reward. This algorithm makes the robot more robust in deal-
ing with the new environment or unexpected situation in a
simulated environment. Moreover, one of the advantages of
using reinforcement learning is that the robot arm can move
automatically to reach the target point without manual input
to control movement.

Reaching task is suitable to be a benchmark for investigating
the performance of reinforcement learning algorithms since it
is one of the fundamental aspects of robotic manipulation. We
define the “reacher” task as a continuous control task to move
the end-effector position of the robotic arm to a designed-
target position. Deep reinforcement learning algorithm such
as Soft-Actor Critic (SAC) [19] plays a role in choosing the
best action for manipulation task.

The contribution of this research is to leverage the novel
knowledge of reinforcement learning applications in the med-
ical field. Our research provides a novel point of view of the
reinforcement learning assumptions, i.e., unstated spatial goal
constraints that could affect the performance of reinforcement
learning agents to achieve its “reacher” target points.

II. RELATED WORK

Shixiang Gu et al. [17] performed experiments on the
robotic arm with reinforcement learning algorithms based
on off-policy and Q-function to facilitate manipulation tasks.
They compared the empirical performance of the trained
agents using DDPG, NAF, and Linear-NAF. The experiments
showed the unstated assumptions of RL training, such as
variation of several axes, serves as confounding variables
in the experiment results. The different settings of hyper-
parameter, network architecture, number of agents, reward
scaling, random seeds, and environment specifications have a
significant impact on empirical learning performance. Cannon
Lewis et al. [20] researched unstated general variants of simple
manipulation tasks (such as variants of goal constraint region
and number of joints) in the experimental setup that could have

Fig. 2. The illustration of goal constraints (in blue boxes) in the ‘Robotic’
environment from the side view

(a) (b)
Fig. 3. Illustration of flat surface goal constraint from side view (a) and top
view (b), the plat surface is colored by blue

a significant impact on the performance of the trained agent.
A.R. Mahmood et al. [21] developed a “reacher” task setup for
reinforcement learning experiments on the UR5 robotic arm.
The robot, as an RL agent, learns how to reach any arbitrary
target positions by trial and error. The learning performance
is profoundly affected by unstated setup specifications such as
system delays and the choice of action spaces. F. Richter et al.
[22] also experimented on the “reacher” task on Patient Side
Manipulator (PSM) arm from the da Vinci R Surgical System
using an open-sourced reinforcement learning environment.
The research displayed that the agent learned the control
policies effectively and able to transfer it to the real robots.
Zhou T. et al. [6] performed research studies on the robotic
arm for the scrub nurse robot application. They combined
hybrid computer vision and robotic manipulation to handle
the surgical instruments. However, their robotic system can
not adapt to new environments or unexpected situations, such
as the changes in the target point in delivering the surgical
instruments. A trained robotic arm with a reinforcement learn-
ing algorithm could address this challenge. In this work, we
researched various unstated spatial goal constraints effect on
a robotic arm as an RL agent for the Robotic Scrub Nurse
application.
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III. METHOD

A. Experimental Setup

We conducted our experiments using the 3D physics engine
and the robotics environment available from the Open AI
Gym [23]. Open AI Gym provides an RL environment as
a benchmark platform for the algorithms. The Robotics gym
environment [24] employs a task-based RL goal and uses the
robotic arm as the main agent. Our experiment used a 7-
DoF Fetch robotic arm manipulator with a gripper with three-
dimensional reaching target points. We also use the Stable
Baselines [25], which provides a set of implemented state of
the art reinforcement learning (RL) algorithms that can be used
in the Open AI Gym environment, i.e., Robotics environment.
We implemented the SAC + HER algorithm and the hyper-
parameters into the Robotics gym environment with modified
spatial goal constraint regions.

We designed the training of the agent to reach the target
point inside the spatial goal constraint in a Robotics gym
environment (see “Fig. 2”). The target point has a tolerance
range of 5 cm, which means the agent “hits” the goal if
the end effector’s position is 5 cm from the target point. In
the Robotics gym environment, the state space comes from
observing the robot state, such as the gripper state, the joint
state, and the goal space. The gripper state consists of gripper
positions and velocities. As for the joint state, it includes all
positions, rotations, and velocities of the robot’s joint. The
goal space consists of the desired goal and the achieved goal.
The desired goal is the target point that the agent wants to
achieve, whereas the achieved goal is the target point that
the agent achieved. The Robotics gym environment generates
the Cartesian coordinate of the target point in a uniform
distribution inside the spatial goal constraint.

The robot moves according to the chosen action space.
The action space includes the changing position and rotation
of the end effector. The action space has a shape of four
dimensions, which consist of three dimensions of position
control and one dimension of the gripper control. The three-
dimension of position control are related to three dimensions
of the Cartesian coordinate. The selected action space changes
the array values in position control and gripper control with
a maximum value of 0 .05 . For example, the chosen action
space moves the position of the end-effector of the robot to
+0 .05 or −0.05 relative to the current Cartesian coordinate.
The state space and the action space described above are the
state space s and action space a as the input for the SAC
algorithm.

The rewards are given when the effector reaches the target
point or when it finishes it one complete episode. Our reward
function is designed as ‘sparse and binary’ rewards, which
means if the agent hits the target, it gets the reward of 0
, and if not, it gets the reward of −1 . The reinforcement
learning training aims to find the best optimal policies and the
highest rewards, which are achieved by interacting with the
environment. In our experiment, the RL policy controls the
movement of robots by choosing the best course of action.
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Fig. 4. Reward Graph of a Trained Agent of SAC + HER

B. SAC & HER Algorithm

Soft Actor-Critic (SAC) [19] is a model-free policy-gradient
algorithm, and suitable for solving continuous control prob-
lems for robotic applications, i.e., “reacher” task. This maxi-
mum entropy reinforcement learning framework uses an off-
policy algorithm to optimize the stochastic policy. SAC al-
gorithm has an actor-critic structure with different networks
for each of policy and value function. SAC also uses entropy
regularization to handle the trade-off between exploration-
exploitation and could address the brittleness problem of the
agent. SAC combines actor-critic training with a stochastic
actor to enable more sample efficiency by reusing the obtained
data. Previous research on this algorithm had shown a better
efficiency performance compare with the prior policy methods.

Hindsight Experience Replay (HER) [18] is a sample-
efficient algorithm that can handle sparse and binary rewards
well. The prior research has already been proved HER as a
robust RL algorithm for complicated robotic behaviors (i.e.,
manipulation task). Besides improving the sample efficiency,
HER algorithm could be able to learn policy even if the agent
achieves an undesired goal. This ability to learn from the
failures, inspired by observing the human ability since all of
the experience can always be learned by us. By using this
way, all the ‘good’ or ‘bad’ experience or trajectories is always
useful for the agent. The HER algorithm replays each episode
with a different goal than the desired goal and views this
undesired goal as a pseudo goal in the process of learning.
This method stores the experiences as an experience replay
buffer for the off-policy RL algorithm. The previous research
showed that the learned policy on the real robot could be used
without any finetuning.

The HER algorithm can be used in conjunction with off-
policy algorithms such as the Soft Actor-Critic (SAC) al-
gorithm. SAC, combined with Hindsight Experience Replay
(HER), improves the performance of the trained agent and the
sample efficiency of the algorithm by using experiences to op-
timize the reinforcement learning policy. The HER algorithm
can overcome the challenges of sparse and binary rewards in
the continuous control tasks, i.e., manipulation tasks.
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(a) 0.3×0.3×0.3 goal constraint (b) 0.3×0.3×0.6 goal constraint (c) 0.6×0.6×0.6 goal constraint

(d) 0.6×0.6×0.6 goal constraint (e) 0.3×0.6×0.3 goal constraint (f) 0.6×1.1×0.6 goal constraint
Fig. 5. Illustration of the spatial goal constraints for testing experiments. Goal constraint regions of (a) - (f) for experiments in Table I No 1-15.

IV. EXPERIMENTAL RESULTS

The results of our experiment consisted of two parts: an
experiment on SAC + HER for the “reacher” task with a
fixed size box-shape goal constraint, and an experiment on
the “reacher” task with various goal constraints.

A. Investigation of the Performance of SAC + HER

We conducted our experiment using SAC + HER algorithms
with the box-shape goal constraint with the dimension size of
0 .3 × 0 .3 × 0 .3m3 (the illustration is shown in “Fig. 2”).
We trained the agent to reach the target points for 20,000
training episodes. We demonstrated the performance of the
RL agent in “Fig. 4”. Higher rewards indicate that the trained
agent performs well, while lower rewards represent the poor
performance of the agent.

The SAC’s reward graph increasing after 5,000 training
episodes and reach stability after 12.500 time steps. The
rewards tend to be stagnant and have little fluctuations near
reward with a value of 0. That means the SAC-HER algorithm
reaches the optimal policy at 12.500 time steps. Since we
applied the sparse and binary rewards system implementation
(score of -1 or 0) , the rewards score of -20 or higher shows
the agent has explored the meaningful state spaces, got enough
experience to move appropriately, and ”hit” the target. The
agent’s policy gave an excellent performance and proved that
the agent succeeds in reaching all 5000 random target points

in the same constraint size successfully with a 100% success
rate.

B. Goal Constraint Experiment

a) Training Phase: We designed our experiment to in-
spect the performance of the SAC algorithm regarding the
unstated assumptions, i.e., spatial goal constraints in a robotic
manipulation task. We would like to know whether this as-
sumption could affect the performance of RL agents. In the
testing phase, we examined the performance of the agent in
carrying out the manipulation task that has one dimension
higher than during the training phase. We evaluated the RL
algorithm in dealing with this phenomenon in the continuous
control problem.

In investigating the performance of SAC + HER, we trained
and tested the agent for reaching the target points in the same
dimension of goal constraints, which is a box-shape with has
a size of 0 .3 × 0 .3 × 0 .3m3. In this goal constraint experi-
ment, we trained the agent in two-dimensional goal constraints
and tested the agent in three-dimensional goal constraints
for 20,000 episodes in the Robotics gym environment. The
two-dimensional goal constraint is a flat surface on the table
that has a dimensional size of 0 .3 × 0 .3m2(xy-surface), see
“Fig. 3”. The training was done with alearning-rate of 0 .001 ,
a buffersize of 1, 000, 000, and a gamma of 0 .95 . In this
training, we used MlpPolicy and SoftActorCritic as a
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model class. Unlike the previous experiment setup, we tested
the performance of the agent with various unseen target points
in spatial goal constraints.

b) Testing Phase: We assigned the agent to reach any
target points inside the boundaries of novel spatial goal
constraint in the Robotics gym environment. We trained the
agent in flat goal constraint because we want to examine
an agent’s performance when dealing with goal constraints
that are dimensionally higher than in the training phase.
We observed that the scrub nurse has to deliver surgical
instruments from mayo tray to the surgeons. In actual cases,
the position of the surgeon’s hand can be within a certain
distance at random. For this reason, we made the various
spatial goal constraints as the set up of the testing phase.
“Fig.5 ” illustrates a picture of the spatial goal constraints for
the testing experiments. The smallest spatial goal constraint
has 0 .3 × 0 .3 × 0 .3m3dimension, and the largest constraint
has 0 .6 × 1 .1 × 0 .6m3dimension.

c) Results: We present the Success Rate in Table I.
As seen in the table, the “reacher” points in various sizes
of unstated” goal constraints were able to be reached by the
trained agent. In experiment numbers 1, 2, and 3, the SAC +
HER policy was able to reach 1,000 random “reacher” points
in test episodes with a 100% success rate. Experiment number
4 has the same constraint size as experiment 3 but with a lower
success rate, 94.51%. The difference in the values of success
rate is caused by differences in the initial state when the agent
starts learning. Experiment numbers 5-10 run on 5,000 test
episodes. The highest success rates are 100.00% in experiment
numbers 5 and 6. while the lowest is experiment number 10,
with a 71% success rate. Experiment numbers 10-15 tested
with 10,000 test episodes. The experiment numbers 11 and 13
have a 100.00% success rate with 0 .3 × 0 .3 × 0 .3m3 and
0 .3 × 0 .6 × 0 .3m3 goal constraints while the lowest success
rate is 72.30% with 0 .6 × 1 .1 × 0 .6m3 goal constraint. We
see the correlation between the size of goal constraint and
the value of the success rate. The larger the goal constraint,
the lower the success rate. The experiments showed that the
trained RL agent was able to reach most of the target in
different goal constraints with success rates vary from 71.00%
to 100.00%.

V. DISCUSSION AND CONCLUSION

In this work, we examined the performance of state-of-
the-art reinforcement learning algorithm: Soft-Actor Critic
(SAC) in performing the task which is related to the work of
Robotic Scrub Nurse, the “reacher” task. This task is the main
requirement for a robotic scrub nurse in managing the surgical
instruments. We set up our experiment with various sizes
of goal constraint regions and investigated the effect of this
unstated RL experiment’s assumption on the performance of
the SAC + HER algorithm in executing the “reacher” task. We
trained our agent in flat-surface goal constraint regions then
tested the agent on various sizes of goal constraint regions.
We got two conclusions from this work.

TABLE I
EXPERIMENTS WITH GOAL CONSTRAINT REGIONS

Table Goal Constraint Region Test
Episodes

Success
Rate∗∗

No x axis
range∗

y axis
range∗

z axis
range∗

1 0.3 0.3 0.3 1,000 100.00%

2 0.3 0.3 0.3 1,000 100.00%

3 0.3 0.3 0.6 1,000 100.00%

4 0.3 0.3 0.6 1,000 94.51%

5 0.3 0.6 0.3 5,000 100.00%

6 0.3 0.6 0.3 5,000 100.00%

7 0.6 0.6 0.6 5,000 86.96%

8 0.6 0.6 0.6 5,000 81.51%

9 0.6 1.1 0.6 5,000 75.50%

10 0.6 1.1 0.6 5,000 71.00%

11 0.3 0.3 0.3 10,000 100%

12 0.3 0.3 0.6 10,000 95.21%

13 0.3 0.6 0.3 10,000 100%

14 0.6 0.6 0.6 10,000 73.81%

15 0.6 1.1 0.6 10,000 72.30%
∗range in m ∗∗success number divided by total episodes

1) 1. The RL algorithm is fit for purpose and applicable for
the reaching task in RSN application. From our observation,
the main requirement for the RSN application is to deliver the
surgical instruments from mayo tray to the hand of a surgeon
within a specific range, which means the basic task is to
reach the mayo tray and to reach the position of the surgeon’s
hand. These continuous state gradient policy algorithms are
robust in dealing with this “reacher” task scenario. The result
unveils that the robot can reach most of the target points (up to
100%) in various unseen spatial goal constraints even though
the policy did not learn how to reach these points in the
training phase. Our result proved that that SAC could deal
with unexpected conditions, especially the new target points
that the agent did not find during the training phase.

2) We discovered that the SAC + HER is suitable for a
“reacher” task since the performance of the trained agent
showed a good result. The RSN can use the learned policy
since the “reacher” task is mainly used for sorting, pick, and
place the task of surgical instruments. For practical surgeon-
robotic scrub nurse collaboration, this experiment can utilize
novel knowledge about the application of continuous control
reinforcement learning algorithms in a medical robotic appli-
cation, especially in the manipulation task.

3) This research provides a novel point of analysis to
compare RL algorithms. Our results (the reward graph and
the success rate table) prove that the trained agents have
successfully reached the random target positions in new var-
ious spatial constraints, which have a higher dimension size
than in the training phase. There is an apparent effect on the
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decrement in the success rate caused by the increasing size of
goal constraints.

This research could be extended as a future work. We would
like to support more advanced manipulation tasks such as
grasping tasks, and “pick and place” tasks. We want to improve
the simulation speed, especially in the training phase, and
deal with a more complicated situation. We would like to test
state-of-art RL algorithms against other “unstated physical and
non-physical assumptions / parameters” such as the different
number of joints in the RL training, the effect of different
kinds of effectors to the agent and RL algorithms, sparse and
dense reward function on continuous control algorithm, and
others. The learned policies also could be transferred to the
real-world environment, as discussed in the prior works [26]–
[30].

We also see that the Fetch Robot is a mobile robot, whose
navigation and exploration system can also be improved by
using Deep Reinforcement Learning. One of the applications
of future medical robotics is the development of reinforcement
learning in mobile medical robots that can help and provide
medical instruments to the medical staff. To the best of our
knowledge, no prior research combines reinforcement learning
in both manipulation tasks and navigation tasks for medical
robotics in the operating room.
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