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Abstract
We propose a scheme that a dynamically evolving atom-molecule condensate maps onto an
SU(1, 1) interferometer, which includes a nonlinear medium (nonlinear phase encoding). We
give an analytical result of the phase uncertainty from the error propagation by measuring the
particle number at the output and demonstrate the optimal quantum metrology, which is
obtained with a time-reversal protocol. We show the phase sensitivity of the nonlinear medium
with time-reversal protocol scales as 1/(2.1N2), which overcome the conventional sensitivity
limit of 1/N. Finally, the effect of the poor particle resolution detection on the phase
sensitivity is discussed.
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1. Introduction

The field of quantum enhanced metrology, explores the pos-
sibility of using quantum techniques to improve measurement
precision than purely classical approaches, has been received
a lot of attention in recent years [1–11]. Interferometers, char-
acterized by the uncertainty of a single phase measurement
Δφ, can provide the most precise measurements. The phase
sensitivity of an interferometer is fundamentally bounded by
the standard quantum limit (SQL) Δφ ∼ 1/

√
N with the clas-

sical resources as an input state, where N is the number of
particles inside the interferometer [12, 13]. The phase sensi-
tivity of an interferometer can be improved by using quan-
tum resources [14]. There are many theoretical proposals and
experimental techniques are developed to improve the sensitiv-
ity [15–20]. By using carefully chosen input states such as the
Schröinger’s cat state (NOON state), SQL is overcome and the

3 Author to whom any correspondence should be addressed.

phase sensitivity can be enhanced to approach the Heisenberg
limit Δφ ∼ 1/N [21–28].

However, most of the current atomic and optical interfer-
ometers, so called traditional interferometers as SU(2) inter-
ferometers, are made of linear devices such as beam splitters
and phase shifters. A new configuration that has drawn con-
siderable interest is the SU(1, 1) interferometer, where two
nonlinear beam splitters take the place of two linear beam split-
ters (BSs) in the traditional interferometer [29]. Such a kind of
interferometer is described by the SU(1, 1) group, as opposed
to SU(2) for BSs. The correlated state is generated under the
nonlinear BSs and hence the precision can be enhanced to beat
SQL [30–34]. Such a high sensitivity has resulted in a strong
theoretical interest in SU(1, 1) interferometry [35, 36] and its
experimental realization in various platforms, such as light [37,
38], spinor Bose–Einstein condensates (BECs) [39–41], and
light-atom hybrids [42].

Though the BSs are nonlinear in the SU(1, 1) interferome-
ter, all of the works are focused on the linear phase encoding,
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and hence the sensitivity of the phaseφ is limited at the order of
1/N. Recent work showed that measurement uncertainty of the
order 1/Nk is possible by using a more general parameter esti-
mation theory, where k is the number of parameter-sensitive
terms [43–45]. This formal result demonstrated that the con-
ventional limit is, in fact, the case with k = 1 and k = 2 may be
able to achieve up to Δφ ∼ 1/N2 when considering the mea-
surements of atom–atom interactions with two-body collisions
(nonlinear phase encoding) [45].

In this paper, we propose a scheme to implement an SU(1,
1) interferometer with nonlinear phase encoding via stimulated
dissociation of a molecular BEC, and study phase sensitivity of
the phase. The scheme includes two pulses of atom-molecule
coupling which are separated by a phase-acquisition period,
similar to the Ramsey procedure in [46, 47] but starting from
a molecular BEC instead of an atomic one. In the limit where
the dissociation does not deplete the molecular BEC, the state
will be an SU(1, 1) squeezed state. The nonlinear phase is
encoded by tuning Feshbach-resonance coupling and switch-
ing the photodissociation lasers for the optical resonant Raman
coupling. We give an analytical result of phase uncertainty
from the error propagation by measuring the atomic number
at the output of the interferometer. We show the optimal phase
uncertainty attains it maximum with echo protocol [48–56]
which perfectly time reverse the first entangling unitary and
then project onto the initial state. We find the optimal phase
uncertainty with time reverse scales as 1/(2.1N2

a ), overcom-
ing the conventional limit of 1/Na, here Na denotes the parti-
cle number insider the interferometer. Finally, we discuss the
effect of the detection noise on the phase sensitivity and show
the phase sensitivity becomes robust to the noise by increasing
the gain of the second beam splitter.

This paper is organized as follows. In section 2, we first
briefly introduce atom-molecule BECs and map the dynam-
ically evolving atom-molecule condensate onto the SU(1, 1)
interferometer. In section 3, we show the phase sensitivity of
the SU(1, 1) interferometer. In section 4, we study the effect
of the detection noise on the phase sensitivity. Finally, our
conclusions are given in section 5.

2. SU(1, 1) interferometry with atom–molecule
condensate

We consider the atom–molecule condensate, where the parti-
cles can populate three modes: two atomic modes (1 and 2) and
one molecular mode (m). Assuming the spatial wave functions
for the modes are fixed and then we associate each mode with
an annihilation operator âi of a particle in mode i(= 1, 2, m).
The interacting atoms and molecules are coupled by means of
either a Feshbach resonance or a resonant Raman transition.
Within the three-mode approximation, the second quantized
Hamiltonian reads [57–61]

Ĥ = δâ†
mâm +

∑
i, j

χijâ
†
i â

†
jâiâ j + g

(
â†

1â†
2âm + â†

mâ1â2

)
, (1)

where the detuning δ denotes the energy difference between
the atomic and molecular levels which can be tuned by an

external field, g is the strength of atom-molecule coupling, and
χij is the s-wave collisional strength between modes i and j.
The total number of the system and the difference between the
two atomic species are given by N̂ = â†

1â1 + â†
2â2 + 2â†

mâm

and D̂ = â†
1â1 − â†

2â2. Here we note these two quantities obvi-
ous constants of motion from Hamiltonian (1). Neglected the
constant terms proportional to D̂ and N̂, the above Hamiltonian
reduces to [58]

Ĥ =
γ√
2N

(
â†

1â†
2âm + â†

mâ1â2

)
+

Γ

4N

(
â†

1â1 + â†
2â2

)2

− Δ

2

(
â†

1â1 + â†
2â2

)
, (2)

where Γ = N[χ11 + χ22 + χmm + 2(χ12 − χm1 − χm2)], Δ =
[δ − (D − 1)χ11 + (D + 1)χ22 + (N − 1)χmm − (N − D)χm1

− (N + D)χm2], and γ = g
√

2N being the rescaled atom–mo-
lecule coupling strength.

In this paper, we consider the short-time dynamics of
molecular dissociation which enables the molecular conden-
sate remains large and is never significantly depleted by the
conversion of a small number of molecules into atoms, i.e.
Nm = â†

mâm ≈ N/2. Under this condition, the molecular cre-
ation and annihilation operators â†

m and âm can be replaced
by a c number

√
Nm and the Hamiltonian with neglecting the

constant terms can be remarkably simplified as [57]

H = λK̂z + μK̂x + χK̂2
z , (3)

where the parameters λ = −Δ, μ = γ, and χ = Γ
N . The oper-

ators K̂x = (â†
1â†

2 + â1â2)/2, K̂y = (â†
1â†

2 − â1â2)/(2i), and
K̂z = (â†

1â1 + â†
2â2 + 1)/2 belong to the SU(1, 1) Lie algebra

and satisfy the canonical commutation relations [K̂x , K̂y] =
−iK̂z, [K̂x , K̂z] = −iK̂y, and [K̂y, K̂z] = iK̂x . The mutual
eigenstates of the Casimir operator K̂2 and K̂z form the basis
set (K̂2

z − K̂2
x − K̂2

y)|n, k〉 = k(k − 1)|n, k〉 and K̂z|n, k〉 = (n +
k)|n, k〉 with n = 0, 1, 2, . . . , and k is called the Bargmann
index. Considering two modes case, we have k = 1/2.

Now we map the dynamically evolving atom–molecule
condensate onto the SU(1, 1) interferometer. The structure of
the interferometer consists of five steps: (I) probe state prepa-
ration (we consider that all of the particles are condensate at the
molecular mode), (II) a first dynamics of molecular dissocia-
tion, (III) phase encoding, (IV) a second dynamics of molec-
ular dissociation, and (V) the particle number in the atomic
modes are measured.

3. Measurement precision

Starting from the atom vacuum state |0, 1/2〉 which corre-
sponds to the molecular BEC. Then the second step of the dis-
sociation is a small fraction of the molecular BEC into atoms
by setting μ � λ,χ, the atomic coherent state is obtained and
given by

|ψ1〉 = e−iK̂xτ1 |0, 1/2〉 (4)

with τ 1 = μt1. The parameter condition μ � λ,χ can be
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Figure 1. (a) Particle number of atoms and (b) the variance as a
function of τ 1. Circles and line correspond to numerical results of
Hamiltonian (1) and analytical results of equations (5) and (6),
respectively. The total particle number for numerical calculation is
chosen as N = 5000, which is same for the following calculations.

easily attained in the current experiment by using the mag-
netic control of the atom–molecule detuning for Feshbach-
resonance coupling and switching the photodissociation laser
for the optical resonant Raman coupling. The atomic number
inside the interferometer Na, defined as Na = 2〈ψ1|K̂z|ψ1〉 −
1, and the correspondence variance ΔN2

a are given by

Na = 2 sinh2 τ1

2
, (5)

ΔN2
a = Na(Na + 2). (6)

The coherent atomic population and the variance dynamics
starting from the vacuum as a function of τ 1 are plotted in
figure 1. The numerical results obtained from Hamiltonian
equation (1) coincide well with the analytical results. It is
therefore clear that the evolution state of the system will
remain an SU(1, 1) coherent state when the molecular mode
is macroscopically populated.

Next, the coupling μ is turned off and the atomic interac-
tion phase is allowed to evolve for a hold time th. In the limit
of χ � λ, the state at the end of the hold time is |ψθ〉 which is

defined as |ψθ〉 = e−iχK̂2
z th |ψ1〉. Such a unitary transformation

encodes the phase θ = χth. The phase may be determined by
a second strong coupling pulse of duration which is described
by e−iK̂xτ2 and the final state is given by |ψf〉 = e−iK̂xτ2 |ψθ〉.
Hence the structure of the scheme combined boost-phase-

boost sequence e−iK̂xτ2e−iθK̂2
z e−iK̂xτ1 . The phase shift θ is esti-

mated by measuring the number of particles Nout, with Nout ≡
2〈ψf|K̂z|ψf〉 − 1, in the atomic modes at the end of the inter-
ferometric sequence. We calculate the phase uncertainty as

Δθ =
ΔNout

|dNout /dθ| . (7)

At the end of the interferometer, Nout and the variance ΔNout

are given by

Nout = 2 sinh τ2 sinh τ1
cos 2θ

(
1 + cosh2 τ1

)
− sinh2 τ1(

1 + cosh2 τ1 − sinh2 τ1 cos 2θ
)2 + cosh τ2 cosh τ1 − 1, (8)

ΔNout =

{
sinh2 τ2

[
2 sinh2 τ1

[(
1 + 3 cosh2 τ1

)
cos 6θ − 3 sinh2 τ1 cos 2θ

]
(
1 + cosh2 τ1 − sinh2 τ1 cos 4θ

)3 −
(
4 sinh3 τ1 − cos 2θ (5 sinh τ1 + sinh 3τ1)

)2

4
(
1 + cosh2 τ1 − sinh2 τ1 cos 2θ

)4

]

− sinh 2τ2
(27 sinh 2τ1 + 4 sinh 4τ1 − 6 sinh 6τ1) cos 2θ + 4 cosh τ1 sinh3 τ1 [3 cosh 2τ1 − 15 + cos 4θ (11 + cosh 2τ1)]

8
(
1 + cosh2 τ1 − cos 2θ sinh2 τ1

)3

+ sinh2 τ2 cosh2 τ1 + cosh2 τ2 sinh2 τ1
}1/2

. (9)

As shown in figures 2(a) and (b), the particle number and the
variance in the atomic modes are plotted as a function of phase
shift θ. The numerical results of Hamiltonian equation (1)
coincide well with the analytical ones in equations (8) and
(9). The rescaled phase uncertainties Δθ̃ = 1/Δθ are also
plotted in figure 2 for different τ 2/τ 1 with τ 1 = 2. It can be
clearly seen Δθ̃ exhibit different behaviors by varying τ 2/τ 1.
Δθ̃ attains its maximal value at special θ for different τ 2/τ 1.
When τ 2/τ 1 = −1, corresponds to the time-reversal scheme
(echo protocol), Δθ̃ attains its maximal value at θ = 0. In
the previous studies, most of the works were focused on the
echo case, here we discuss the effect of τ 2 on the phase
uncertainty.

As shown in figure 3(a), the optimal phase uncertainty
Δθ̃opt, defined as Δθ̃opt = maxθ(Δθ̃), is plotted as a function

of τ 2/τ 1. The phase sensitivity in the regime τ 2/τ 1 < −1
is much better than that in the regime τ 2/τ 1 > 1. When
|τ 2| is large enough, Δθ̃ opt is nearly independent on the
τ 2. The optimal phase sensitivity is obtained when τ 2/τ 1 =

−1, which means the optimal interferometer configuration
is reached for the time-reversal protocol. Such a protocol,
perfectly time reverse the first entangling unitary and then
project onto the initial state, with linear phase encoding has
been shown to saturate the quantum Cramér–Rao bound for
arbitrary pure states [54], which indicates the time-reversal
protocol to be the optimal quantum metrology. Here, the
interferometer with nonlinear phase encoding has the same
property. The optimal phase θopt is also plotted in figure 3(b),
it is shown θopt is nearly independent on τ 2 when it is
large enough, which is similar to the behavior of Δθ̃opt.

3
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Figure 2. (a) Nout and (b) (ΔN )2
out as a function of θ with τ 2/τ 1 = −1.2. (c)–(h) Δθ̃ as a function of phase shift θ for different ratio τ 2/τ 1

with τ 1 = 2. The symbols and solid lines correspond to numerical results of Hamiltonian (1) and analytical results of equations (7)–(9),
respectively.

Figure 3. (a) Δθ̃opt and (b) the optimal angle θopt as a function of
τ 2/τ 1 with τ 1 = 2. The inset shows the parameter τ 2/τ 1 varies
from −0.4 to 3 and the red dashed line denote the fundamental limit
for the linear phase encoding, i.e. ∼ 1/Na.

Though phase sensitivity can be improved through the non-
linear phase encoding, the collisional interaction may result

in the loss of atom–molecule phase coherence on a time
scale τ pd = 1/(2Naχ) [57]. As shown in figure 3(b), when
τ 2/τ 1 < 0, θopt < χτpd = 1

5.52 . While θopt > χτ pd as τ 2/τ 1

increases.

For the SU(1, 1) interferometry with linear phase,
i.e. e−iK̂zθ, the fundamental limit of the phase sensitivity
is Na(Na + 2) which indicates Δθ ∼ 1/Na. The inset of
figure 3(a) shows the optimal phase uncertainty Δθ̃opt with
nonlinear phase can easily beat the fundamental limit by tun-
ing τ 2. In figure 4, we show the scaling of Δθ̃opt versus Na

at τ 2/τ 1 = −1. A fit of the data gives the optimal sensitivity
as

Δθ̃opt = 2.1N2
a + 4.5Na + 0.4. (10)

When Na is large,Δθ̃opt ∼ 2.1N2
a . Therefore, the sensitivity of

parameter estimation can be greatly improved with a nonlinear
phase encoding. In fact, the quantum fisher information for the
state |ψ1〉 is

FQ = 4(ΔK̂2
z )2 = 5[Na(Na + 2)]2 + 4Na(Na + 2). (11)

When Na � 1, we have FQ ∼ 5N4
a . Thus the quantum Cramé

r–Rao bound for such a nonlinear phase encoding is Δθ̃opt �√
5N2

a .
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Figure 4. Scaling of Δθ̃opt as a function of Na. Solid line is the
numerical result, while the dots are polynomial fits.

4. Detection noise

The amount of measured sensitivity is limited by several
factors in the practice. The largest influence is the particle-
independent detection noise which makes n and n +Δn parti-
cles indistinguishable and arises mostly from the photon shot
noise of the probe light. Quantum-enhanced measurements
typically require single-particle resolution (Δn ∼ 1). Here, we
consider an imperfect detection resolution as a type of Gaus-
sian noise with variance (Δn)2, which corresponds to an uncer-
tainty Δn in the particle number measured at the end of the
interferometer. Such a technical noise increases the quantum
noise on the measurement signal, and the phase sensitivity is
modified as [48]

Δθopt =

√
ΔN 2

out + (Δn)2

|dNout/dθ| . (12)

In general, the presence of the noise would also modify the
optimal operating point. In figure 5, Δθ̃ opt is plotted as a func-
tion of τ 2/τ 1 with different noise (Δn)2. It is clearly shown the
detection noise decreases the phase sensitivity in the regime
τ 2/τ 1 < 1. In particular, the detection noise has a great influ-
ence on the sensitivity at τ 2/τ 1 = −1. It means the echo pro-
tocol scheme is not robust to detection noise. Whereas, in the
regime τ 2 > τ 1, the sensitivity Δθ̃opt is nearly independent on
the noise. From figure 5, we can also find Δθ̃opt to be robust
to the noise by increasing |τ 2| in a negative regime of τ 2/τ 1.
Hence, we can increase the value of τ 2 to reduce the effect of
the noise on the phase sensitivity.

Before conclusion, we estimate some parameters under
current experimental conditions. In the zero-range single-
channel scattering approximation, the molecule–molecule and
atom–molecule s-wave scattering lengths are approximated
as am ≈ 0.6aa, aam ≈ 1.2aa with aa being the bohr radius
[62, 63]. Assuming a molecular BEC of 104 (with 0.2% disso-
ciation) are trapped in a 100 Hz spherical trap, the dephasing of
the molecular field takes place on a time scale on the order of
10 ms. If we consider the frequency of the trap with 104 Hz, the
atom–molecule Feshbach conversion frequency becomes to 1
MHz and the dephasing time will be also much larger. Then
the dephasing can be neglected during the phase encoding.

Figure 5. Δθ̃opt as a function of τ 2/τ 1 with τ 1 = 2 for different
detection noise (Δn)2.

5. Conclusion

In summary, we have proposed a scheme to realize an SU(1,
1) interferometer with nonlinear phase encoding. We mapped
a short time dynamically evolving atom–molecule condensate
onto the SU(1, 1) interferometer. We discussed the phase sen-
sitivity of the interferometer with different τ 2/τ 1 and show the
sensitivity in the regime τ 2/τ 1 < −1 is much better than that
in the regime τ 2/τ 1 > 1. In particular, we found optimal phase
sensitivity is obtained at τ 2 = −τ 1, which means the echo
protocol is optimal for the metrology. We also discussed the
optimal sensitivity Δθ̃opt versus the population of atoms inside
the interferometer and showed the scaling of Δθ̃opt ∼ 2.1N2

a
which is overcome the conventional limit. The effect of the
detection noise is also discussed on the phase sensitivity. Our
results may suggest new implications for quantum metrology.
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[54] Macrì T, Smerzi A and Pezzè L 2016 Phys. Rev. A 94 010102
[55] Manceau M, Khalili F and Chekhova M 2017 New J. Phys. 19

013014
[56] Szigeti S S, Lewis-Swan R J and Haine S A 2017 Phys. Rev.

Lett. 118 150401
[57] Tikhonenkov I and Vardi A 2009 Phys. Rev. A 80 051604(R)
[58] Zhou L, Zhang W, Ling H Y, Jiang L and Pu H 2007 Phys. Rev.

A 75 043603
[59] Santos G, Tonel A P, Foerster A and Links J 2006 Phys. Rev. A

73 023609
[60] Jing L, Ye D-F, Ma C, Fu L-B and Liu J 2009 Phys. Rev. A 79

025602
[61] Cui B, Wang L C and Yi X X 2012 Phys. Rev. A 85 013618
[62] Petrov D S, Salomon C and Shlyapnikov G V 2004 Phys. Rev.

Lett. 93 090404
[63] Jensen L M, Makela H and Pethick C J 2007 Phys. Rev. A 75

033606

6

https://doi.org/10.1126/science.1104149
https://doi.org/10.1126/science.1104149
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1103/PhysRevA.85.023815
https://doi.org/10.1103/PhysRevA.85.023815
https://doi.org/10.1103/physreva.85.011801
https://doi.org/10.1103/physreva.85.011801
https://doi.org/10.1103/physrevlett.102.100401
https://doi.org/10.1103/physrevlett.102.100401
https://doi.org/10.1103/physreva.46.r6797
https://doi.org/10.1103/physreva.46.r6797
https://doi.org/10.1103/physreva.99.022106
https://doi.org/10.1103/physreva.99.022106
https://doi.org/10.1103/physrevlett.108.233602
https://doi.org/10.1103/physrevlett.108.233602
https://arxiv.org/abs/2001.00160
https://doi.org/10.1088/1751-8113/47/42/424006
https://doi.org/10.1088/1751-8113/47/42/424006
https://doi.org/10.1016/bs.po.2015.02.003
https://doi.org/10.1016/bs.po.2015.02.003
https://doi.org/10.1016/bs.po.2015.02.003
https://doi.org/10.1016/bs.po.2015.02.003
https://doi.org/10.1038/ncomms1122
https://doi.org/10.1038/ncomms1122
https://doi.org/10.1103/physrevlett.110.181101
https://doi.org/10.1103/physrevlett.110.181101
https://doi.org/10.1103/physreva.54.r4649
https://doi.org/10.1103/physreva.54.r4649
https://doi.org/10.1103/physrevlett.79.3865
https://doi.org/10.1103/physrevlett.79.3865
https://doi.org/10.1103/physreva.68.025602
https://doi.org/10.1103/physreva.68.025602
https://doi.org/10.1103/physreva.68.023810
https://doi.org/10.1103/physreva.68.023810
https://doi.org/10.1209/0295-5075/78/30004
https://doi.org/10.1209/0295-5075/78/30004
https://doi.org/10.1103/physreva.80.052114
https://doi.org/10.1103/physreva.80.052114
https://doi.org/10.1103/physreva.33.4033
https://doi.org/10.1103/physreva.33.4033
https://doi.org/10.1103/physreva.49.1231
https://doi.org/10.1103/physreva.49.1231
https://doi.org/10.1103/physreva.41.1653
https://doi.org/10.1103/physreva.41.1653
https://doi.org/10.1080/095003497153275
https://doi.org/10.1080/095003497153275
https://doi.org/10.1103/physrevapplied.10.064046
https://doi.org/10.1103/physrevapplied.10.064046
https://doi.org/10.1063/1.4931686
https://doi.org/10.1063/1.4931686
https://doi.org/10.1364/oe.24.017766
https://doi.org/10.1364/oe.24.017766
https://doi.org/10.1063/1.4960585
https://doi.org/10.1063/1.4960585
https://doi.org/10.1063/1.3606549
https://doi.org/10.1063/1.3606549
https://doi.org/10.1038/ncomms4049
https://doi.org/10.1038/ncomms4049
https://doi.org/10.1038/nature08919
https://doi.org/10.1038/nature08919
https://doi.org/10.1038/ncomms7811
https://doi.org/10.1038/ncomms7811
https://doi.org/10.1103/physrevlett.117.013001
https://doi.org/10.1103/physrevlett.117.013001
https://doi.org/10.1103/physrevlett.115.043602
https://doi.org/10.1103/physrevlett.115.043602
https://doi.org/10.1016/j.physleta.2004.06.080
https://doi.org/10.1016/j.physleta.2004.06.080
https://doi.org/10.1016/j.physleta.2004.06.080
https://doi.org/10.1016/j.physleta.2004.06.080
https://doi.org/10.1103/physrevlett.98.090401
https://doi.org/10.1103/physrevlett.98.090401
https://doi.org/10.1103/physreva.77.043620
https://doi.org/10.1103/physreva.77.043620
https://doi.org/10.1038/417529a
https://doi.org/10.1038/417529a
https://doi.org/10.1103/physrevlett.89.180401
https://doi.org/10.1103/physrevlett.89.180401
https://doi.org/10.1103/physrevlett.116.053601
https://doi.org/10.1103/physrevlett.116.053601
https://doi.org/10.1103/physreva.73.023803
https://doi.org/10.1103/physreva.73.023803
https://doi.org/10.1103/physrevlett.106.140502
https://doi.org/10.1103/physrevlett.106.140502
https://doi.org/10.1103/physreva.86.023844
https://doi.org/10.1103/physreva.86.023844
https://doi.org/10.1103/physreva.92.023847
https://doi.org/10.1103/physreva.92.023847
https://doi.org/10.1103/physrevlett.115.163002
https://doi.org/10.1103/physrevlett.115.163002
https://doi.org/10.1103/physreva.94.010102
https://doi.org/10.1103/physreva.94.010102
https://doi.org/10.1088/1367-2630/aa53d1
https://doi.org/10.1088/1367-2630/aa53d1
https://doi.org/10.1103/physrevlett.118.150401
https://doi.org/10.1103/physrevlett.118.150401
https://doi.org/10.1103/physreva.80.051604
https://doi.org/10.1103/physreva.80.051604
https://doi.org/10.1103/physreva.75.043603
https://doi.org/10.1103/physreva.75.043603
https://doi.org/10.1103/physreva.73.023609
https://doi.org/10.1103/physreva.73.023609
https://doi.org/10.1103/physreva.79.025602
https://doi.org/10.1103/physreva.79.025602
https://doi.org/10.1103/physreva.85.013618
https://doi.org/10.1103/physreva.85.013618
https://doi.org/10.1103/physrevlett.93.090404
https://doi.org/10.1103/physrevlett.93.090404
https://doi.org/10.1103/physreva.75.033606
https://doi.org/10.1103/physreva.75.033606

	Improving the phase sensitivity of an SU (1, 1) interferometer via a nonlinear phase encoding
	1.  Introduction
	2.  SU(1, 1) interferometry with atom–molecule condensate
	3. Measurement precision
	4. Detection noise
	5. Conclusion
	Acknowledgments
	ORCID iDs
	References


