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A B S T R A C T   

Accurate and timely evaluation and assessment of emission data and its impact on environmental status has been 
a key challenge due to the conventional manual approach utilized for independently computing most emission 
parameters. To resolve this long-standing issue, we proposed an Artificial Intelligence (AI)-driven Decision Tree 
model to adequately classify Environmental Protection Agency (EPA) status based on multiple Emission Pa
rameters. The model’s performance was systematically evaluated using multiple emission parameters obtained 
from a two-stroke motorcycle dataset collected in Nigeria across various metrics such as K-S Statistics, Confusion 
Matrix, Correlation Heat Map, Decision Tree, Validation Curve, and Threshold Plot. The K-S Statistics plot’s 
experimental results showed a considerable correlation between HC, CO, and the target variable, with values 
ranging from 0.75 to 0.80. At the same time, CO2 and O2 do not correlate with the target variable with values 
between 0.00 and 0.09. The Confusion Matrix revealed that the proposed model has an overall accuracy of 99.9% 
with 481 true positive predictions and 75 true negative predictions, indicating the effectiveness of the proposed 
AI-driven model. In conclusion, our proposed AI-driven model can effectively classify EPA status based on 
multiple emission parameters with high accuracy, which may spur positive advancement in policy enhancement 
for proper environmental management.   

1. Introduction 

The increasing global demand for transportation has significantly 
increased the number of vehicles [1,2]. This increase has had a negative 
impact on the environment, as the emissions from these vehicles 
contribute to air pollution and climate change [3,4]. In particular, the 

use of motorcycles has grown significantly in recent years, especially in 
developing countries where they are often the preferred mode for last- 
mile transportation [5,6]. As a result, it is crucial to find ways to mini
mize the environmental impact of emissions from motorcycles [5,7,8]. 

One approach to addressing motorcycle emissions is through the use 
of regulatory policies [9,10]. The Environmental Protection Agency 
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(EPA) is a government agency that sets standards for the emissions of 
vehicles [11,12]. The EPA issues status to each motorcycle model based 
on its emissions performance, which can range from “not certified” to 
“certified.” [13]. These EPA status labels can significantly impact the 
marketability and sales of motorcycles [14]. 

However, determining the EPA status of a motorcycle can be a 
complex and time-consuming process that could lower efficiency, as it 
requires considering a range of emission parameters such as carbon 
monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx) [15]. In 
addition, the EPA updates its standards and testing procedures period
ically, making it challenging to keep track of the latest requirements 
[16]. 

To address these challenges, we propose the use of a decision tree 
model driven by artificial intelligence (AI) technique to adequately 
recognize and classify EPA status based on motorcycle emission pa
rameters. Decision tree models are a popular choice for classification 
tasks because they can handle multiple input variables and provide clear 
explanations of the decision-making process [17,18]. By using an AI- 
driven model to classify EPA status, we aim to improve the process’s 
accuracy and efficiency and reduce or eliminate human error. We used a 
dataset of motorcycle emission test results to train and validate the 
model. Our objective is to achieve high prediction accuracy, meaning 
that the model should be able to accurately predict the EPA status of a 
motorcycle or similar machines based on its emission parameters. 

As with any technology, the use of artificial intelligence (AI) in 
regulatory decision-making carries with it specific ethical and societal 
implications that must be carefully considered [19]. In the context of the 
proposed decision tree model for classifying facilities based on emission 
parameters and determining their EPA statuses, several key ethical and 
societal issues merit further examination [20,21]. 

One concern to consider is the potential for the AI model to make 
decisions that are not transparent or explainable [22,23]. While the AI- 
driven decision tree model is designed to make decisions based on a 
clear set of rules, it may be difficult for humans to understand the exact 
logic behind the model’s predictions [24,25]. This lack of transparency 
could make it challenging for regulators and the public to understand 
and accept the decisions made by the AI-driven model [26,27]. 

From a societal perspective, the use of AI-based models in regulatory 
decision-making may raise concerns about the potential loss of jobs and 
the impact on employment [28,29]. While the AI-driven decision tree 
model could potentially streamline and automate the EPA classification 
process, it could also lead to the displacement of human workers who 
currently perform this task [30,31]. It will be necessary to carefully 
consider the potential impacts on employment and explore strategies to 
mitigate any negative consequences [32]. 

The use of AI in regulatory decision-making, such as the proposed 
decision tree AI model for EPA classification, carries with it several 
ethical and societal implications that should be carefully considered. It 
will be important to address these issues to ensure this technology’s 
responsible and fair implementation [31,33]. 

To evaluate the performance of our model, we used a range of 
evaluation metrics, including accuracy, precision, and recall [34]. We 
also compared the performance of our model to other machine learning 
algorithms. In addition, we also examined the potential benefits and 
limitations of using AI for the classification of EPA status [28]. This 
includes a discussion of the ethical and societal implications of using AI 
in regulatory decision-making [35]. 

Consequently, the goal of this study is to demonstrate the effective
ness of using an AI-driven decision tree model for the recognition and 
classification of EPA status based on motorcycle emission parameters. 
The contributions of this study are threefold.  

• First, this study adds to the growing literature on mitigating the 
negative impact of two-stroke motorcycle emissions in developing 
countries.  

• Second, it proposes a decision tree model to classify EPA status based 
on motorcycle emission parameters. The proposed model has more 
prediction accuracy and is less time-consuming compared to con
ventional methods.  

• Third, with a more accurate and efficient method for determining 
EPA status, this study contributes to developing more effective reg
ulatory policies for reducing the environmental impact of transport 
emissions.  

• The Proposed model can be deployed widely to classify similar 
emissions from sources other than motorcycles and may spur positive 
advancement in policy enhancement for proper environmental 
management. 

The remaining part of the paper is structured as follows. Section 2 
details the study area, materials, methods used in this study, the 
modeling framework, and the limitations. Section 3 has the results and 
discussion, which also details the explicability and interpretability of the 
proposed decision tree model. Section 4 has the conclusion, which ex
plains the contribution of this study to the field of artificial intelligence 
and environmental management. 

2. Materials and methodology 

This section details the study area in Africa and how the data was 
collected and processed. It further entails a detailed report of the model 
development framework, the policy analysis, and the limitations. 

2.1. Study area and sampling locations 

The study area is Ogun State, one of Nigeria’s thirty-six states in the 
southwest part of the nation [36]. It shares borders with Lagos State (the 
commercial nerve center of the country) and the Atlantic Ocean on the 
south, Oyo and Osun States on the north, Ondo State on the east, and the 
Republic of Benin on the west. Ogun State is home to the highest number 
of industries in Nigeria. It has the longest stretch of road connecting 
Lagos to other parts of the country [37,38]. The sampling locations 
within the state are shown in (Fig. 1) [39,40]. 

2.2. Data collection 

Raw exhaust emissions from 1950 motorcycle taxis were sampled 
using a hand-held KANE Automotive 4-Gas Analyzer (Model 4–2). The 
instrument was programmed to detect and measure carbon dioxide 
(CO2), with an accuracy of ± 0.5 %, volume reading at a resolution of 
0.1 %, at a range of 0–16 % and over-range of 25 %, oxygen (O2), with 
an accuracy of ± 0.1 %, volume at a resolution of 0.01 %, at a range of 
0–21 % and over-range of 25 %), hydrocarbons, HC (with an accuracy of 
12 ppm volume at a range of 0–5,000 ppm and an over-range of 10,000 
ppm), carbon monoxide, CO (with an accuracy of ± 0.06 %, volume at a 
range of 0–10 % and over-range of 20 %) and Lambda, “λ˝ (at a reso
lution of 0.001 and a range of 0.8–1.2), which was calculated using 
(Equation 1) [41–43]. 
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CO, CO2, and O2 are measured in percentage volume (% vol.), and 
HC is measured in parts per million volume (ppm vol.). K ˝1˝ is the HC 
conversion factor expressed in parts per million volume equivalent of 
normal hexane (C6H14). The value is given as 6.0 × 10–4 according to 
Eqn. 1. H ˝CV˝ denotes the hydrogen-carbon atomic ratio of the fuel 
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(minimal value is 1.7261), and O ˝CV˝ denotes the oxygen-carbon 
atomic ratio of the fuel (minimal value is 0.0176)“ [38]. 

Before each measurement round, the motorcycle taxis were allowed 
to travel a distance of 50 m from their stations, and the ’No–Load Short 
Test’, commonly referred to as ’idle mode tests’, was performed on each 
motorcycle taxi. The idle mode test approach has been recently reported 
in similar studies as effective in collecting emission data since motor
cycles are not required to move at constant load, mimicking stationary 
equipment [38,44]. The exhaust probe of the sampling instrument was 
inserted into the motorcycle’s exhaust pipe end and clamped to the tail 
end to avoid falling off. Measurements were recorded in (%) volume for 
CO2, CO, and O2 concentrations and parts per million (ppm) for HC. 
Each round of measurement lasted 10 min. All recorded data is auto
matically stored in the instrument’s memory drive for later download. 
After each round of measurements, the sampling analyzer was calibrated 
to ’zero’ by exposing the probes to ambient conditions while ensuring 
that the exhaust probe tips were clean of any dirt or debris. All samples 
and testing events were undertaken in November 2020-February 2021, 
coinciding with Nigeria’s dry season. Therefore, during all testing, the 
air temperature was between 31 and 40 ◦C, and the relative humidity 
was between 45 and 60 %. Sampling events were conducted in triplicate 
for each motorcycle taxi within the sampling period to determine sta
tistical variations in the datasets. 

2.3. Two-stroke motorcycles’ selection criteria 

The selection criteria for the two-stroke motorcycles was primarily 
based on the popularity of commercial motorcycles equipped with en
gines ranging from 100 to 120 cc. These motorcycles were sourced from 
brands such as Suzuki, Jincheng, Lifan, and Qlink, bearing model in
scriptions like 100, 120, A100, B120, etc. The study area for selection 

was Ogun State, Nigeria, which shares its borders with Lagos State, 
Nigeria’s most populous and commercially significant state. Ogun State 
is also known as the most industrialized state in the country, in addition 
to experiencing a surge in population due to its proximity to Lagos State 
and other states from the northern and eastern parts of the country. 

The choice of these motorcycles can be attributed to their cost- 
effectiveness and robustness on challenging roads and terrains. They 
are known for their gasoline-lubrication method, involving a pre- 
mixture of engine oil with gasoline. In this system, adequate lubrica
tion of the cylinder wall is crucial. The oil, reaching the combustion 
chamber through the cylinder, undergoes combustion alongside the fuel. 
However, the oil-scraper ring’s limitations, where the oil in the crank
case lubricates the cylinder, result in an oil shortage. As the oil in the 
crankcase is allocated for lubricating all reciprocating engine parts and a 
portion of the cylinder, the oil, burning in conjunction with gasoline, 
leads to a higher concentration of exhaust gas pollutants released from 
the combustion chamber. 

Moreover, the design of these selected motorcycles, combined with 
the tendency of a significant percentage of commercial motorcycle users 
to purchase adulterated engine oil from roadside vendors and opt for 
substandard or sometimes foreign fairly-used spare parts due to the 
elevated costs of acquiring standard replacements, amplifies the release 
of pollutants during the combustion process. 

2.4. Model development 

To develop and evaluate an AI-driven decision tree model for the 
recognition and classification of EPA status based on motorcycle emis
sion parameters, we collected a dataset of motorcycle emission test re
sults from 20 local governments in Ogun State, Nigeria. The dataset 
consists of recordings of emission parameters from various motorcycle 

Fig. 1. Study area and sampling locations. Source: Author.  
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models that include CO, HC, CO2, and O2 that served as input to the 
machine learning model. Besides, the EPA assigns a compliance status to 
each motorcycle model based on its adherence to emissions regulations, 
which can be expressed as a “Pass” or “Fail” grade. The process followed 
is shown in Fig. 2. 

To prepare the dataset for the proposed model development and 
deployment, we performed several preprocessing steps Using Python 3.9 
on Google Collab and employing several Python libraries, including 
Numpy, Pandas, PyTorch, and Matplotlib. First, we removed any 
missing or incomplete records from the dataset. It should be noted that 
we also transformed the emission parameters into a standardized scale 
using the min–max normalization method. This process scales the 
emission parameters to a range of 0 to 1, with 0 representing the min
imum value in the dataset and 1 representing the maximum value 
[45,46]. This is a common preprocessing step in machine learning as it 
helps improve the model’s performance via preservation of the distri
bution of the characteristics in the original data to a great extent [47]. 
To deal with outliers, we used the 3-sigma rule statistical technique to 
remove any data points more than three standard deviations away from 
the mean. This helps to minimize errors and remove data with extreme 
values. 

Next, we split the dataset into training and testing sets. 80 % of the 
data was used to train the model, while the remaining 20 % was used for 
testing and validation [48]. The training set was used to train the de
cision tree model. In contrast, the testing set was used to evaluate the 
model’s performance [49]. We used stratified sampling to ensure that 
the training and testing sets were representative of the overall dataset, 
with a similar distribution of EPA status labels. 

To develop the decision tree model, we used the scikit-learn library 
in Python [50–52]. We selected the decision tree algorithm from the 
library and specified the parameters for the model. In particular, we set 
the maximum depth of the tree to 10 and used the Gini criterion for 
splitting the nodes. We also used 10-sample stratified k-fold cross- 
validation method to evaluate the model’s performance during 
training, which was also evident in the performance of our validation 
curve (Fig. 6). 

To evaluate the performance of the decision tree model, we used a 
range of evaluation metrics, including accuracy, precision, and recall 
[53]. Accuracy measures the overall percentage of correct predictions 
made by the model. In contrast, precision measures the percentage of 
true positive predictions out of all positive predictions [18,54]. Recall 

measures the percentage of true positive predictions out of all actual 
positive cases [55–57]. 

In addition to evaluating the decision tree model, we compared the 
performance of the model to other benchmark machine learning algo
rithms such as Extreme Gradient Boosting (XGB) and Ada Boost (Table 1). 
To do this, we trained and evaluated these algorithms using the same 
dataset and evaluation metrics as the decision tree model. The decision 
Tree model was considered to have the potential for practical deployment 
of AI-driven solutions for EPA status classification due to its relatively 
lower computation time, leading to a faster classification output. 

2.5. Policy analysis and limitations 

We conducted a literature review of relevant studies to examine the 
potential benefits and limitations of using AI to classify EPA status 
[58,59]. We also considered the ethical and societal implications of 
using AI in regulatory decision-making, including potential biases in the 
dataset and the impact on stakeholders such as motorcycle manufac
turers and consumers [28,60]. 

Consequently, our methodology for this study consisted of collecting 
a dataset of motorcycle emission test results, preprocessing the data, 
developing and evaluating a decision tree AI model, and examining the 
potential benefits and limitations of using AI to classify EPA status. Our 
objective was to achieve high prediction accuracy with the decision tree 
model, meaning that it should be able to accurately predict the EPA 
status of a motorcycle based on its emission parameters. 

2.6. Real-life application of the model 

To test the performance of our model on real-world data, we used a 
dataset of BMW eDrive vehicles [61]. The dataset contains data on 
vehicle speed, HC tailpipe emissions, CO tailpipe emissions, CO2 tailpipe 
emissions, and O2 tailpipe emissions. We used a 10-sample cross- 
validation approach to evaluate the performance of the model. The 
model achieved an accuracy of 100 %. This suggests that our model can 
be used to accurately classify the emission status of real-world vehicles. 
We compared the decision tree model to other state-of-the-art AI models, 
such as XGBoost and AdaBoost. We found that the model achieved 
similar or better performance than these models on our BMW eDrive 
dataset. This suggests that our decision tree model is competitive for 
classifying emission status based on emission parameters. 

Fig. 2. A conceptualized framework of the proposed AI-driven decision three model for EPA status.  
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3. Results and discussion 

In this section, we discussed the results of our AI-driven decision tree 
classifier model based on standard model evaluation metrics (SMEM). 

The decision tree classifier was chosen over other models on the 
model comparison list (Table 1) due to its simplicity and ease of inter
pretation, computational efficiency, and robustness to outliers and 
missing data. It requires less time to complete a sample than other 
models, which means that it can process large amounts of data quickly 
and efficiently. This is particularly useful when working with large 
datasets or when the model needs to be retrained frequently. The model 

shows improvement after initial fine-tuning, as seen in Table 2 (initial 
model training) and Table 3 (result after model fine-tuning). 

The decision tree classifier model achieved an accuracy of 0.9992, an 
area under the receiver operating characteristic (ROC) curve (AUC) of 
0.9996, a recall of 0.9991, a precision of 1, an F1 score of 0.9996, Kappa 
of 0.9968 and MCC of 0.9969 (Table 3). These results indicate that the 
model has a high level of accuracy in correctly predicting the target 
variable, the EPA emission status, and can distinguish between the 
positive and negative classes with a high degree of accuracy. The high 
precision and recall scores further indicate that the model can identify 
the most relevant cases while maintaining high accuracy. The Kappa and 

Table 1 
Comparison between different models with key metric evaluations.  
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MCC scores also indicate that the model almost perfectly agrees with the 
human annotator. These results demonstrate that the decision tree 
model is a highly accurate and well-performing model for the classifi
cation of EPA emission status and, thus, can also be deployed in similar 
use-case scenarios. 

3.1. Model confusion matrix 

The confusion matrix (CM) analysis (Fig. 3) is another performance 
metric used to evaluate the model. CM is a table that shows the number 
of true positive (TP), true negative (TN), false positive (FP), and false 
negative (FN) predictions made by the model. 

The confusion matrix presents the following values: TP, Passed/ 
Passed = 481, TN, Failed/Failed = 75, FP, Failed/Passed = 0, and FN, 
Passed/Failed = 0. 

True Positives (TP) or Passed/Passed represent the number of cases 
where the model correctly predicted that the EPA status is passed. In this 
case, the model correctly predicted 481 cases to be Passed. 

True Negatives (TN) or Failed/Failed represent the number of cases 
where the model correctly predicted that the EPA status is failed. In this 
case, the model correctly predicted 75 cases to be Failed. 

False Positives (FP) or Failed/Passed represent the number of cases 
where the model incorrectly predicted that the EPA status is passed. In 
this case, the model made no incorrect predictions of Failed as a Passed. 

False Negatives (FN) or Passed/Failed represent the number of cases 
where the model incorrectly predicted that the EPA status is failed. In 
this case, the model does not make any incorrect predictions. 

The confusion matrix results indicate that the decision tree model 
has a high degree of accuracy in classifying the target EPA status. The 
low number of False Positives and False Negatives values suggests that 
the model can correctly identify the majority of the cases. It is also worth 
mentioning that the model has a high degree of specificity, as it correctly 
identifies a high percentage of Failed cases. Additionally, the model has 
a high degree of sensitivity, as it correctly identifies a high percentage of 
Passed cases. 

The confusion matrix results indicate that the decision tree model 
can effectively classify EPA status based on emission parameters with a 
high degree of prediction accuracy. The model has a good balance be
tween true positive and true negative predictions, which indicates a 
well-trained model. 

3.2. Kolmogorov-Smirnov (KS) Statistic 

In addition to the evaluation of the model’s performance using pre
cision, recall, and threshold values, the model’s performance was also 
evaluated using the Kolmogorov-Smirnov (KS) Statistic (Fig. 4). The K-S 
Statistic is a measure of the degree of separation between the cumulative 
distribution functions (CDFs) of two classes. In this study, the K-S 

Table 2 
Initial model training before fine-tuning.  

Table 3 
Key metric results after model fine-tuning.  
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Statistic was used to measure the degree of separation between the CDFs 
of the predicted probability of the positive class and the true positive 
rate. The K-S Statistic is computed as the maximum difference between 
the two CDFs and ranges between 0 and 1. A value of 1 indicates a 
perfect separation between the two classes, while a value of 0 indicates 
no separation. The equation for the K-S Statistic can be seen as presented 
below. 

KS = |F1(x) − F2(x) | (2)  

where F1(x) and F2(x) are the cumulative distribution functions of the 
two samples being compared, and x is a value on the x-axis. 

The results of the K-S Statistic for the decision tree classifier model 
were found to be 0.869 at a threshold of 0.310. This indicates that the 
model achieved a high degree of separation between the predicted 
probability of the positive class and the true positive rate [62]. The high 
K-S Statistic value of 0.869 indicates that the model effectively differ
entiated between the positive (1) and negative (0) classes. 

3.3. Variable correlation heatmap 

In (Fig. 5) we used a variable heat map to evaluate the correlation 
between different emission parameters and the target variable, which is 
the status classification of 2-stroke motorcycles by the EPA. 

Fig. 3. Confusion matrix of the proposed model.  

Fig. 4. K-S statistics plot for the proposed decision tree model.  
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The heat map shows a high degree of correlation between the HC, 
CO, and the target variable, with values ranging from 0.75 to 0.80. This 
indicates that these emission parameters strongly influence the EPA 
classification status. In contrast, the correlation between CO2 and O2 
and the target variable is low, with values ranging from 0.00 to 0.09. 
This suggests that these emission parameters have little effect on the 
EPA classification status of 2-stroke motorcycles. 

Our analysis of the results indicates that the proposed decision tree 
AI model can effectively classify motorcycle EPA status based on emis
sion parameters. Using a variable heat map in this study is essential in 
evaluating the correlation between emission parameters and the target 
variable. It is a well-established method to understand the relationship 
between different variables. It can be used to identify which variables 
are more important in the classification process. The use of a variable 

Fig. 5. Feature correlation heat map of the model.  

Fig. 6. Decision tree model validation curve.  
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heat map in this research paper adds a level of rigor and credibility to the 
study. 

3.4. Validation curve for decision tree classifier 

The results of the validation curve suggest that the decision tree 
model can effectively classify EPA status based on emission parameters 
with a high degree of accuracy. 

The validation curve shows that both the training and validation sets 
start with an accuracy of 0.986 and a maximum depth of 0.9, increasing 
as the maximum depth increases (Fig. 6). The training set reaches an 
accuracy of 1.000 on a maximum depth of 2. In contrast, the validation 
set increases to an accuracy of 0.998 on the same maximum depth. This 
indicates that the model can generalize to new unseen data and perform 
well on training and validation sets. 

The consistency in the accuracy of both sets suggests that the model 
is not overfitting or underfitting the data and that the maximum depth of 
2 is a good value for the hyperparameter. 

As the maximum depth increases, the validation set accuracy re
mains constant at 0.998. The training set increases until it reaches 1.000 
again at 5 maximum depth and continues steadily until it reaches 10 
max depth. This indicates that the model continues to perform well on 
the training set as the maximum depth increases; however, the valida
tion set performance remains constant. This means that the model is not 
generalizing well to unseen data anymore and is starting to memorize 
the training set, which is an indication of overfitting. 

Overall, the results of the validation curve suggest that the decision 
tree model is performing well on both the training and validation sets, 
with a high degree of accuracy. However, it also suggests that the model 
may be overfitting after a certain point and that a maximum depth of 2 
or 5 would be a good choice for the hyperparameter based on the trade- 
off between bias and variance. 

3.5. Decision tree classifier threshold 

The model was trained using a threshold of 0.00 (Fig. 7) based on the 
precision, recall, and accuracy, among other metrics evaluated. The 
results indicate that the decision tree classifier achieved a precision of 
0.9896 with a recall value of 0.9253 (Table 3). The model demonstrates 
a high level of precision, which indicates the model’s ability to correctly 

classify positive cases with a high degree of confidence. Additionally, the 
high recall value signifies that the model can identify a large proportion 
of the positive cases within the dataset. 

The threshold value of 0.00 has been selected to ensure a high recall 
rate, which is critical for automating the EPA motorcycle emission 
classification. A high recall rate is particularly important in applications 
where missing a positive case would have significant consequences, such 
as air emissions. 

It is worth noting that the trade-off between precision and recall is a 
common issue in machine learning, and the threshold value can be 
adjusted to find the optimal balance between the two. In this case, the 
high precision and recall values the decision tree classifier achieves 
suggest that the model can effectively classify the samples in the dataset. 
The decision tree classifier demonstrates high precision and recall, with 
a low threshold value of 0.00, which is suitable for classifying air 
emissions. This strongly indicates that the model is an effective tool for 
classifying emission status. 

3.6. Model explanation 

3.6.1. Feature selection and importance 
One of the major challenges in machine learning revolves around the 

difficulty of interpreting complex models [63]. However, decision tree 
(DT) models provide a notable advantage regarding explainability and 
interpretability. Unlike ensemble models, such as random forests or 
gradient boosting, DT models offer a more straightforward and intuitive 
structure, making them easier to comprehend. 

In (Fig. 8), we examined feature importance metrics, such as the 
impact of HC and CO emissions; the relative importance of each feature 
can be assessed within the model (a). Furthermore, employing feature 
selection techniques with a score of 0.997 further emphasizes the sig
nificance of the selected features (b). This high score suggests that these 
two features play a crucial role in determining the model’s predictions. 
Combining feature importance analysis, feature selection, and the 
transparent nature of decision trees allows for a clear understanding of 
the DT model’s decision-making process. This attribute renders DT 
models highly suitable for domains where comprehensibility and 
interpretability are vital considerations. 

Fig. 7. Threshold analysis for decision tree classifier.  
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3.6.2. Decision tree analysis 
In Fig. 9, we presented the results of the decision tree analysis ac

cording to their class label leaf nodes, which represent the final decisions 
or predictions of the model. The first leaf node, Leaf1, is characterized by 
the condition “HC <= 5993.5,” with a Gini index of 0.5 and 222 sam
ples. The Gini index measures the impurity of a leaf node, where a value 
of 0 represents a pure node, and a value of 1 represents an impure node. 
In this case, a Gini index of 0.5 indicates a relatively high impurity level 
in this leaf node. The value for this leaf node is [1111, 1111], repre
senting the number of samples in each class (failed, passed). The class for 
this leaf node is “Failed.” 

The second leaf node, Leaf2, is characterized by the condition “CO 
<= 4.005,” with a Gini index of 0.1676 and 1224 samples. The Gini 
index is lower than the first leaf node, indicating that this leaf is less 
impure. The value for this leaf node is [113, 1111], representing the 
number of samples in each class (failed, passed). The class for this leaf 
node is “Passed.” 

The third leaf node, Leaf3, is characterized by the condition “CO <=

3.2708,” with a Gini index of 0.0089 and 1116 samples. The Gini index 
is even lower than the second leaf node, indicating that this leaf is much 
less impure. The value for this leaf node is [5, 1111], representing the 

Fig. 8. Visualizing model features importance and selection.  

Fig. 9. Proposed model decision tree analysis.  
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number of samples in each class (failed, passed). The class for this leaf 
node is “Passed.” 

The fourth leaf node, Leaf4, is characterized by the condition “HC 
<= 5317.0386,” with a Gini index of 0.2706 and 31 samples. The Gini 
index is relatively lower than the first leaf node but higher than the 
second and third leaf nodes. The value for this leaf node is [5,26], rep
resenting the number of samples in each class (failed, passed). The class 
for this leaf node is “Passed.” 

In general, the results of the decision tree analysis indicate that the 
model can effectively classify EPA status based on emission parameters 
with a high degree of prediction accuracy. The analysis of the leaf nodes’ 
characteristics shows that the tree is well-balanced regarding the num
ber of samples in each class and has good interpretability. The Gini index 
values of the leaf nodes indicate that the tree has a good balance be
tween pure and impure leaf nodes, which is a good indication of a well- 
trained model. 

4. Conclusion and future work 

4.1. Conclusion 

In conclusion, we have presented an AI-driven decision tree model 
for adequate recognition and classification of EPA status based on 
emission parameters using motorcycle emissions dataset gathered via 
standard experimental settings. The model was trained and tested using 
a dataset of emission parameters from 2-stroke motorcycles and ach
ieved a prediction accuracy of over 92 %. 

The results of this study demonstrate the utility of decision AI-driven 
tree-based models for classifying EPA status and highlight the impor
tance of accurate emissions data in achieving this goal. The model can be 
easily adapted to other types of industrial sources, especially those with 
similar emissions, and can be integrated into existing decision-making 
processes for enhancing and modifying emission control policies. We 
believe the AI-driven decision tree model presented in this study can be a 
valuable tool for regulatory agencies, industry professionals, and re
searchers. By providing a reliable and efficient means of classifying EPA 
status based on emission parameters, this model can help support 
effective policy-making and decision-making in air pollution control. 

The findings of this study also underscore the importance of data 
quality and completeness for the prediction task. It is suggested that 
future research should focus on expanding the dataset and exploring 
other potential AI models or approaches that may improve the predic
tion accuracy of the developed model. In addition, the decision tree 
model can also be extended to predict other emission-related parame
ters, such as emission rates or emission factors. This would enable the 
model to be used for other applications, such as emission inventory 
development or emission reduction planning. 

Finally, the AI-driven decision tree model developed in this study 
represents a major milestone in using artificial intelligence to enhance 
and modify emission control policies. This model’s high prediction ac
curacy and ease of use make it a valuable tool for researchers, industry 
professionals, and regulatory agencies to improve their understanding of 
industrial emissions and develop more effective policies to control them. 
However, further improvement can be made by fine-tuning the 
maximum depth of the decision tree to avoid overfitting and by “fix- 
balancing” possible imbalanced datasets in the algorithm setup. 

4.2. Future work 

Like all research, this study is not without its limitations. This section 
provides an accounting of these limitations, which should be considered 
when interpreting the findings and results of our study.  

• AI Ethics and Societal Impact: The AI-driven decision tree model may 
raise ethical and societal issues, including transparency and job 
displacement. While the model is designed to increase efficiency and 

reduce human error, the potential impact on employment and the 
need for a clear explanation and justification of the model’s decisions 
are significant considerations to be researched in the future.  

• Temporal Limitation: The EPA updates its standards and testing 
procedures periodically. Therefore, the model’s accuracy may be 
affected if it is not updated in line with these changes. Therefore, 
techniques that could facilitate development of machine learning 
models that can automatically adapt to abrupt changes resulting 
from EPA update could be integrated into the proposed model in the 
future. 

Future research should aim to address these limitations by consid
ering a continual update of the training data and model to reflect 
changes in EPA standards and testing procedures. Furthermore, more in- 
depth studies on the ethical and societal implications of using AI in 
regulatory decision-making are warranted. 
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