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Supplementary material 

Sustainable Lithium and Cobalt Recovery from spent lithium-ion batteries: Best Practices for the Future. A 

Review 

 

1 Supplementary Figures and Tables 

1.1 Supplementary Figures 

Supplementary Figure 1: Flowchart for the literature review method. 
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1.2 Supplementary Tables 

Table S1: Residual parameters and conditions of hydrometallurgy used for S-LIBs from literature. 

 
Spent materials Method Residu

e 

Efficiency Purity Condition Ref. 

LiCoO2 Precipitation Li2SO4 90% — 4M, H2SO4, H2O2 [80°C/4 

h] 

[1] 

Ethanol, LiOH 

LIB scraps Precipitation LiF 50% >99wt% 500°C/5h, KHSO4 [2] 

9 M H2SO4, 30 wt%H2O2 (3 

mLg−1) [90–100 °C] 

6 M NaOH 

Cathode materials Precipitation Li2CO3 80 ± 1% 96.97% 4MHCl, [80 °C] (20 g L−1) [3] 

Na2CO3 [100°C] 

Cathode materials Precipitation Li2CO3 71% — 2MH2SO4,2% 

H2O2 (33gL−1) [60 °C] 

[4] 

Na2CO3 [50 °C] 

Mixed cathode 

materials 

Precipitation Li2CO3 80% — 4M, H2SO4, 

30wt%H2O2 (50gL−1)  

[70–80 °C] 

[5] 

NaOH, Na2CO3 [40 °] 

LiNi0.3Mn0.3Co0.3O2 Precipitation Li2CO3 Leaching 

99.7% 

— 3.0 M trichloroacetic acid, 

4.0 vol% H2O (50 g L−1) 

[70–80 °C] 

[6] 

Saturated Na2CO3 solution 

LiNi0.3Mn0.3Co0.3O2 Precipitation Li2CO3 Leaching 

99% 

— 2 M H2SO4 + 4 vol% 

H202 (50g L−1) [50 °C/2 h] 

[7] 

KMnO4, C4H8N2O2 

Na2CO3 [90 °C] 

LiNi0.5Mn0.3Co0.2O2 Precipitation Li2CO3 76% >99.5% 1Mof oxalic acid (10gL−1) 

[95 °C/12 h] 

[8] 

5MK2CO3 [80°C/4 h] 

LiFePO4 Precipitation Li2CO3 99.35% — Ball mill with citric acid, 

H2O2 (20 g g−1) 

[8] 

SaturatedNa2CO3[95 °C] 

Cathode Precipitation Li2CO3 38% 99.48% 1MH2SO4,5vol% 

H2O2 [60°C/1h], sonication 

[9] 

 2M NaOH 

LiFePO4 Precipitation Li2CO3 80% — 4M MSA acid (80g L−1) 

18%, H2O2 

[10] 

5%NaOH solution, 

30%Na2CO3 [96°C/30 min] 

LiNi0.5Co0.2Mn0.3O2 Precipitation Li2CO3 91.23% 99% Sodium persulfate (400 g 

L−1) [85 °C] 

[11] 

Na2CO3 

LiNixMnyCo1−x−yO2 Precipitation Li3PO4 Leaching 

99.1% 

— 750°C/3h,2.75MH3PO4 [40°

C/10 min] 

[12] 

LiNi0.3Mn0.3Co0.3O2 Precipitation Li2CO3 Leaching 

99% 

— 2 M H2SO4 + 4 vol% 

H202 (50g L−1) [50 °C/2 h] 

[7] 

KMnO4, C4H8N2O2 
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Na2CO3 [90 °C] 

LiNi0.5Mn0.3Co0.2O2 Precipitation Li2CO3 76% >99.5% 1Mof oxalic acid (10gL−1) 

[95 °C/12 h] 

[8] 

5MK2CO3 [80°C/4 h] 

LiFePO4 Precipitation Li2CO3 99.35% — Ball mill with citric acid, 

H2O2 (20 g g−1) 

[8] 

SaturatedNa2CO3[95 °C] 

Cathode Precipitation Li2CO3 38% 99.48% 1MH2SO4,5vol% 

H2O2 [60°C/1h], sonication 

[9] 

 2M NaOH 

LiFePO4 Precipitation Li2CO3 80% — 4M MSA acid (80g L−1) 

18%, H2O2 

[10] 

5%NaOH solution, 

30%Na2CO3 [96°C/30 min] 

LiNi0.5Co0.2Mn0.3O2 Precipitation Li2CO3 91.23% 99% Sodium persulfate (400 g 

L−1) [85 °C] 

[11] 

Na2CO3 

LiNixMnyCo1−x−yO2 Precipitation Li3PO4 Leaching 

99.1% 

— 750°C/3h,2.75MH3PO4 [40°

C/10 min] 10 M NaOH 

[12] 

Cathode materials Precipitation Li2CO3 >90% 99.93% 3.5Macetic acid (40 g L−1), 

H2O2 4vol% [60°C] 

[13] 

     Saturated 

Na2CO3 [20\60 °C] 

 

Cathode materials Precipitation Li3PO4 85.56% — Oxidation at 600 °C, 0.28 

M H2SO4 + H2O2 (16 g L−1) 

[85°C/2 h] 

[14] 

NaOH, Na3PO4 

Anode Precipitation Li2CO3 Leaching ≈ 

100% 

>99% 1.5M HCl (100 g L−1) CO2 [15] 

 

 

 

Table S2: Bacterial-based bioleaching for recovery of valuable metals from spent Li-ion batteries (LIBs)[16]. 

  Recovery efficiency   

Bacteria Key leaching 

condition 

Co Li Additional 

information 

References 

A. thiooxidans 

(80191) 

Pulp density: 

0.25% (w/v), 

pH: 2.4 

23% 60% Co and Li 

dissolution were 

higher in two-

step bioleaching 

[17] 

A. ferrooxidans 

(ATCC 19859) 

Solid-to-

liquid ratio: 5 

g/L, pH: 2.5 

65% 9.5% Higher 

solid/liquid ratios 

reduced leaching 

efficiency 

[18] 

A. ferrooxidans 

(DSMZ, 1927) 

Pulp density: 

100 g/L 

94% 60.30% For optimum 

metal extraction, 

replenishment of 

microbial culture 

[19] 
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was done every 

24 h for 3 cycles 

A. ferrooxidans 

(DSMZ 1927) 

Pulp density: 

100 g/L 

82% 89% Leaching 

efficiency was 

increased with 

increase of 

sulphuric and 

ferric ion in the 

leaching medium 

as well 

as by 

replenishing the 

culture for three 

cycles 

[19] 

A. ferrooxidans 

(DSMZ 1927) 

Pulp density: 

100 g/L 

90.4% 89.9% NMC (NMC111 

and NMC622) 

were regenerated 

from the oxalate-

based 

coprecipitated 

product. The 

electrochemical 

stability of the 

regenerated 

NMC was similar 

to the 

commercial 

NMC. 

[20] 

A. ferrooxidans 

(isolated) 

Pulp density: 

1% (s/v), 

bacteria 

inoculation: 

5% 

(v/v), pH: 1.5 

47.60% NA Enhancement of 

cobalt dissolution 

was observed at 

higher redox 

potential 

[21] 

A. thiooxidans 

(PTCC 1717) 

Pulp density: 

30 g/L, pH: 

2.0 

60% 99% Bioleached spent 

LIB residue was 

safe to disposal 

as meets the 

TCLP limit 

[22] 

A. thiooxidans 

(PTCC 1647) 

Pulp density: 

40 g/L, pH: 

2.0 

88% 100% The shrinking 

core model 

predicted that the 

[23] 
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diffusion of ferric 

ions plays a key 

role in metal 

leaching. 

A. ferrooxidans 

(isolated) 

Pulp density 

1% (s/v) 

99.90% NA Enhancement of 

cobalt dissolution 

was noticed with 

addition of 

copper ions (0.75 

g/L). 

[24] 

A. ferrooxidans 

(isolated) 

Pulp density 

1% (s/v) 

98.40% NA Enhancement of 

cobalt dissolution 

was noticed with 

addition of silver 

ions (0.02 g/L). 

[25] 

A. ferrooxidans 

(PTCC 1647) 

Pulp density: 

10 g/L 

19.0% 67% Ultrasonic 

treatment (203.5 

W for 30 min) 

enhanced metal 

leaching 

efficiency. 

[26] 

A. ferrooxidans 

(isolated) 

pH: 2.5, 

inoculum 

concentration: 

20% (v/v) 

57.8% NA Highest Co 

recovery was 

found at an 

inoculum 

concentration of 

20% (v/v) in 14 

days of 

incubation time. 

[27] 

A. ferrooxidans 

(isolated) 

Pulp density: 

10 g/L, pH: 2- 

4, inoculum 

concentration: 

20% 

(v/v) 

73.95% NA Bacterial strain 

isolated from the 

acid mine 

drainage has the 

potential as 

oxidizing agent 

for recovery of 

metals (Co and 

Li) from spent 

LIBs. 

[28] 

L. ferriphilum 

(isolated) 

Pulp density: 

1% (w/v), 

pH: 

NA 49% Leaching tests 

were done using 

pyrite (FeS2, 16 

[29] 
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1.0 g/L) as the 

energy source 

and LFP as the 

cathode material. 

A. thiooxidans 

(isolated) 

Pulp density: 

1% (w/v), 

pH: 

1.0 

NA 98% Leaching tests 

were done using 

S0 (16 g/L) as the 

energy source 

and LFP as the 

cathode material. 

[29] 

A. thiooxidans 

(isolated) 

Pulp density: 

1% (w/v), 

pH: 

1.0, 

NA 97% Leaching tests 

were done using 

S0 (16 g/L) as the 

energy source 

and LMO as the 

cathode material. 

[29] 

Mixed bacterial 

culture 

(isolated) 

Pulp density: 

2 g/L, pH: 7.0 

NA 63.8% Adaptation of 

bacteria with 

LiCl solution 

(576 µM) 

enhanced 

leaching 

efficiency of 

bacteria to Li. 

[30] 

Mixed culture 

of IOB and 

SOB (isolated) 

Pulp density 

10 g/L, pH: 

1.5 

(2.0 g/L 

sulfur + 2.0 

g/L FeS2) 

90.00% 80.0% Acidolysis was 

the main 

mechanism for Li 

dissolution, 

whereas both 

acidolysis and 

redoxolysis 

contributed for 

Co dissolution. 

[31] 

Mixed culture 1 

 

 

A. ferrooxidans 

and A. 

thiooxidans 

Iron sulfate: 

36.7 g/L; 

sulfur: 

5.0 g/L, pH: 

1.5 

50.40% 99.20% Metal contents in 

spent LIB residue 

reduced to below 

the regulatory 

standard 

(USEPA), thus 

the bioleached 

LIBs can be 

reused or 

[32] 
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disposed safely 

Mixed culture 1 

 

A. ferrooxidans 

and A. 

thiooxidans 

Pulp density: 

1% (w/v), 

pH: 

2.0 

99.95% NA High metal 

extraction yield 

observed in short 

time 

(3 days) in two-

step leaching 

with addition of 

silver ions 

(0.02 g/L) 

[33] 

Mixed culture 1 

 

A. ferrooxidans 

and A. 

thiooxidans 

Pulp density: 

10% (w/v), 

pH: 

1.8 

53.20% 60.00% Biogenic ferric 

ion-based critical 

metal leaching 

yield was further 

improved with 

addition 100 mM 

H2SO4. 

[34] 

Alicyclobacillus 

sp. (sulfur-

oxidizing) and 

Sulfobacillus 

sp. (iron-

oxidizing) 

bacteria 

 72%   89% Thermodynamics 

analysis shows 

bioleaching has 

much greater 

potential to 

happen compared 

to chemical 

leaching. 

[35] 

 

 

 

 

 

 

 

 

 

 

Table S3: Fungal-based bioleaching for recovery of valuable metals from spent Li-ion batteries (LIBs) [16]. 

  Recovery 

efficiency 

  

Fungal Key leaching 

condition 

Co Li Additional information References 
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Aspergillus 

niger 

(PTCC 

5210) 

Pulp density: 

1% (w/v); 

pH: 

6.0 

45% 95% Spent medium exhibited 

highest metal extraction 

yield. Also, bioacids 

yielded higher metal 

extraction than synthetic 

chemical acids. 

[36] 

A. niger 

MM1/SG1 

(isolated) 

Pulp density: 

0.25% (w/v); 

carbon 

source: 

sucrose; pH: 

3.5 

80–

82% 

100% Leaching efficiency was 

higher in cell-free spent 

medium. Also, bioacids 

yielded higher metal 

extraction than the 

synthetic chemical acid 

(citric acid). 

[37] 

A. niger 

(PTCC 

5210) 

Pulp density: 

1–2% (w/v), 

carbon 

source: 

sucrose 

64% 100% Co and Ni recovery were 

higher at 1% pulp density, 

while Li, Cu, Al and Mn 

recovery was higher at 2% 

pulp density. 

[38] 

A. niger 

(PTCC 

5210) 

Pulp density: 

1 % (w/v), 

carbon 

source: 

sucrose 

38% 100% Adapted fungi showed 

higher metal leaching 

performance compared to 

unadopted fungi. 

[39] 

A.niger 

(PTCC 

5010) 

Pulp density: 

10% (w/v), 

carbon 

source: 

glucose; pH: 

4.5, 

NA 73.3% A. niger showed higher 

metal leaching 

performance than 

Penicillium chrysogenum. 

[40] 

P. 

chrysogenum 

(PTCC 

5037) 

Pulp density: 

10% (w/v), 

carbon 

source: 

glucose; pH: 

4.5, 

NA 54.6% A. niger showed higher 

metal leaching 

performance than 

P. chrysogenum. 

[40] 

A.niger 

(isolated) 

Carbon 

sources: 

glucose, 

57% 72% Highest valuable metal 

recovery obtained in the 

one step process 

[27] 
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incubation 

time: 21 days 

Mixed 

culture 1 

A. niger and 

Aspergillus 

tubingensis 

Pulp density: 

1% (w/v), 

carbon 

source: 

sucrose, 

impure 

sucrose or 

vinasse 

∼60% ∼95% Spent medium leaching 

showed higher metal 

recovery efficiency with 

vanasse as the carbon 

source 

[41] 
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