
Supplementary material

Sustainable Lithium and Cobalt Recovery from spent lithium-ion batteries: Best Practices for the Future. A Review

1 Supplementary Figures and Tables

1.1 Supplementary Figures

Supplementary Figure 1: Flowchart for the literature review method.

1.2 Supplementary Tables

 Table S1: Residual parameters and conditions of hydrometallurgy used for S-LIBs from literature.

Spent materials	Method	Residu e	Efficiency	Purity	Condition	Ref.
LiCoO ₂	Precipitation	Li ₂ SO ₄	90%	_	4M, H ₂ SO ₄ , H ₂ O ₂ [80°C/4 h] Ethanol, LiOH	[1]
LIB scraps	Precipitation	LiF	50%	>99wt%	500°C/5h, KHSO ₄ 9 M H ₂ SO ₄ , 30 wt%H ₂ O ₂ (3 mLg ⁻¹) [90–100 °C] 6 M NaOH	[2]
Cathode materials	Precipitation	Li ₂ CO ₃	$80\pm1\%$	96.97%	4MHCl, [80 °C] (20 g L ⁻¹) Na ₂ CO ₃ [100°C]	[3]
Cathode materials	Precipitation	Li ₂ CO ₃	71%		2MH ₂ SO ₄ ,2% H ₂ O ₂ (33gL ⁻¹) [60 °C] Na ₂ CO ₃ [50 °C]	[4]
Mixed cathode materials	Precipitation	Li ₂ CO ₃	80%	—	4M, H ₂ SO ₄ , 30wt%H ₂ O ₂ (50gL ⁻¹) [70–80 °C] NaOH, Na ₂ CO ₃ [40 °]	[5]
LiNi _{0.3} Mn _{0.3} Co _{0.3} O ₂	Precipitation	Li ₂ CO ₃	Leaching 99.7%	_	3.0 M trichloroacetic acid, 4.0 vol% H ₂ O (50 g L ⁻¹) [70–80 °C] Saturated Na ₂ CO ₃ solution	[6]
LiNi _{0.3} Mn _{0.3} Co _{0.3} O ₂	Precipitation	Li ₂ CO ₃	Leaching 99%	_	2 M $H_2SO_4 + 4 \text{ vol}\%$ $H_2O_2 (50g L^{-1}) [50 °C/2 h]$ KMnO ₄ , C ₄ H ₈ N ₂ O ₂ Na ₂ CO ₃ [90 °C]	[7]
$LiNi_{0.5}Mn_{0.3}Co_{0.2}O_{2}\\$	Precipitation	Li ₂ CO ₃	76%	>99.5%	1Mof oxalic acid (10gL ⁻¹⁾ [95 °C/12 h]	[8]
LiFePO ₄	Precipitation	Li ₂ CO ₃	99.35%		5MK ₂ CO ₃ [80°C/4 h] Ball mill with citric acid, H ₂ O ₂ (20 g g^{-1}) SaturatedNa ₂ CO ₃ [95 °C]	[8]
Cathode	Precipitation	Li ₂ CO ₃	38%	99.48%	1MH ₂ SO ₄ ,5vol% H ₂ O ₂ [60°C/1h], sonication 2M NaOH	[9]
LiFePO ₄	Precipitation	Li ₂ CO ₃	80%	—	4M MSA acid (80g L ⁻¹) 18%, H ₂ O ₂ 5%NaOH solution,	[10]
LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂	Precipitation	Li ₂ CO ₃	91.23%	99%	30%Na ₂ CO ₃ [96°C/30 min] Sodium persulfate (400 g L ⁻¹) [85 °C] Na ₂ CO ₃	[11]
LiNi _x Mn _y Co _{1-x-y} O ₂	Precipitation	Li ₃ PO ₄	Leaching 99.1%		750°C/3h,2.75MH ₃ PO ₄ [40° C/10 min]	[12]
LiNi _{0.3} Mn _{0.3} Co _{0.3} O ₂	Precipitation	Li ₂ CO ₃	Leaching 99%	_	$\begin{array}{c} 2 \ M \ H_2 SO_4 + 4 \ vol\% \\ H_2 O_2 \ (50g \ L^{-1}) \ [50 \ ^\circ C/2 \ h] \\ KMnO_4, \ C_4 H_8 N_2 O_2 \end{array}$	[7]

<u>\00 5%</u>	Na ₂ CO ₃ [90 °C] 1Mof ovalic acid (10 σ L ⁻¹)	[8]
/99.570		[0]
	-	
	Ball mill with citric acid,	[8]
99.48%	·	[9]
		[10]
		[10]
	,	
99%		[11]
	Na ₂ CO ₃	
_	750°C/3h,2.75MH ₃ PO ₄ [40°	[12]
99.93%		[13]
	E 3	
		[14]
		[14]
>99%		[15]
	 99.93% 	$>99.5\% 1 \text{Mof oxalic acid } (10 \text{gL}^{-1}) \\ [95 °C/12 h] \\ 5 \text{MK}_2 \text{CO}_3 [80°C/4 h] \\ - & \text{Ball mill with citric acid,} \\ \text{H}_2 \text{O}_2 (20 \text{ g g}^{-1}) \\ \text{SaturatedNa}_2 \text{CO}_3 [95 °C] \\ 99.48\% 1 \text{MH}_2 \text{SO}_4, 5 \text{vol}\% \\ \text{H}_2 \text{O}_2 [60°C/1h], \text{ sonication} \\ 2 \text{M NaOH} \\ - & 4 \text{M MSA acid } (80 \text{g L}^{-1}) \\ 18\%, \text{H}_2 \text{O}_2 \\ 5\% \text{NaOH solution,} \\ 30\% \text{Na}_2 \text{CO}_3 [96°C/30 \text{ min}] \\ 99\% \text{Sodium persulfate } (400 \text{ g L}^{-1}) \\ 185 °C] \\ \text{Na}_2 \text{CO}_3 \\ - & 750°C/3h, 2.75 \text{MH}_3 \text{PO}_4 [40° \\ \text{C}/10 \text{ min}] 10 \text{ M NaOH} \\ 99.93\% 3.5 \text{Macetic acid } (40 \text{ g L}^{-1}), \\ \text{H}_2 \text{O}_2 \text{ 4vol}\% [60°C] \\ \text{Saturated} \\ \text{Na}_2 \text{CO}_3 [20 \label{eq:solution} \\ \text{M}_2 \text{SO}_4 + \text{H}_2 \text{O}_2 (16 \text{ g L}^{-1}) \\ [85°C/2 \text{ h}] \\ \text{NaOH, Na}_3 \text{PO}_4 \\ \end{array}$

Table S2 : Bacterial-based bioleaching for recovery of valuable metals from spent Li-ion batteries (LIBs)[16].
Recovery efficiency

Bacteria	Key leaching condition	Со	Li	Additional information	References
A. thiooxidans (80191)	Pulp density: 0.25% (w/v), pH: 2.4	23%	60%	Co and Li dissolution were higher in two- step bioleaching	[17]
<i>A. ferrooxidans</i> (ATCC 19859)	Solid-to- liquid ratio: 5 g/L, pH: 2.5	65%	9.5%	Higher solid/liquid ratios reduced leaching efficiency	[18]
A. ferrooxidans (DSMZ, 1927)	Pulp density: 100 g/L	94%	60.30%	For optimum metal extraction, replenishment of microbial culture	[19]

12	AnallecnKes2024; 0	(2): 00-00				DOI
	A. ferrooxidans (DSMZ 1927)	Pulp density: 100 g/L	82%	89%	was done every 24 h for 3 cycles Leaching efficiency was increased with increase of sulphuric and ferric ion in the leaching medium as well as by replenishing the culture for three cycles	[19]
	A. ferrooxidans (DSMZ 1927)	Pulp density: 100 g/L	90.4%	89.9%	NMC (NMC ₁₁₁ and NMC ₆₂₂) were regenerated from the oxalate- based coprecipitated product. The electrochemical stability of the regenerated NMC was similar to the commercial NMC.	[20]
	<i>A. ferrooxidans</i> (isolated)	Pulp density: 1% (s/v), bacteria inoculation: 5% (v/v), pH: 1.5	47.60%	NA	Enhancement of cobalt dissolution was observed at higher redox potential	[21]
	A. thiooxidans (PTCC 1717)	Pulp density: 30 g/L, pH: 2.0	60%	99%	Bioleached spent LIB residue was safe to disposal as meets the TCLP limit	[22]
	A. thiooxidans (PTCC 1647)	Pulp density: 40 g/L, pH: 2.0	88%	100%	The shrinking core model predicted that the	[23]

 $\label{eq:constraint} Journal of Analytical Techniques and Research$

				diffusion of ferric ions plays a key role in metal leaching.	
<i>A. ferrooxidans</i> (isolated)	Pulp density 1% (s/v)	99.90%	NA	Enhancement of cobalt dissolution was noticed with addition of copper ions (0.75 g/L).	[24]
<i>A. ferrooxidans</i> (isolated)	Pulp density 1% (s/v)	98.40%	NA	Enhancement of cobalt dissolution was noticed with addition of silver ions (0.02 g/L).	[25]
<i>A. ferrooxidans</i> (PTCC 1647)	Pulp density: 10 g/L	19.0%	67%	Ultrasonic treatment (203.5 W for 30 min) enhanced metal leaching efficiency.	[26]
<i>A. ferrooxidans</i> (isolated)	pH: 2.5, inoculum concentration: 20% (v/v)	57.8%	NA	Highest Co recovery was found at an inoculum concentration of 20% (v/v) in 14 days of incubation time.	[27]
<i>A. ferrooxidans</i> (isolated)	Pulp density: 10 g/L, pH: 2- 4, inoculum concentration: 20% (v/v)	73.95%	NA	Bacterial strain isolated from the acid mine drainage has the potential as oxidizing agent for recovery of metals (Co and Li) from spent LIBs.	[28]
<i>L. ferriphilum</i> (isolated)	Pulp density: 1% (w/v), pH:	NA	49%	Leaching tests were done using pyrite (FeS ₂ , 16	[29]

JAnalTechRes2024; 6	(2): 00-00				DOI:10.26502/jatr.44
<i>A. thiooxidans</i> (isolated)	1.0 Pulp density: 1% (w/v),	NA	98%	g/L) as the energy source and LFP as the cathode material. Leaching tests were done using	[29]
	pH: 1.0			$S^0(16 \text{ g/L})$ as the energy source and LFP as the cathode material.	
<i>A. thiooxidans</i> (isolated)	Pulp density: 1% (w/v), pH: 1.0,	NA	97%	Leaching tests were done using S^0 (16 g/L) as the energy source and LMO as the cathode material.	[29]
Mixed bacterial culture (isolated)	Pulp density: 2 g/L, pH: 7.0	NA	63.8%	Adaptation of bacteria with LiCl solution (576 μM) enhanced leaching efficiency of bacteria to Li.	[30]
Mixed culture of IOB and SOB (isolated)	Pulp density 10 g/L, pH: 1.5 (2.0 g/L sulfur + 2.0 g/L FeS ₂)	90.00%	80.0%	Acidolysis was the main mechanism for Li dissolution, whereas both acidolysis and redoxolysis contributed for Co dissolution.	[31]
Mixed culture 1 <i>A. ferrooxidans</i> and <i>A.</i> <i>thiooxidans</i>	Iron sulfate: 36.7 g/L; sulfur: 5.0 g/L, pH: 1.5	50.40%	99.20%	Metal contents in spent LIB residue reduced to below the regulatory standard (USEPA), thus the bioleached LIBs can be reused or	[32]

2

oxidizing) bacteria disposed safely

happen compared

to chemical leaching.

Mixed culture 1 <i>A. ferrooxidans</i> and <i>A.</i> <i>thiooxidans</i>	Pulp density: 1% (w/v), pH: 2.0	99.95%	NA	High metal extraction yield observed in short time (3 days) in two- step leaching with addition of silver ions	[33]
Mixed culture 1 A. ferrooxidans and A. thiooxidans	Pulp density: 10% (w/v), pH: 1.8	53.20%	60.00%	(0.02 g/L) Biogenic ferric ion-based critical metal leaching yield was further improved with addition 100 mM H ₂ SO ₄ .	[34]
Alicyclobacillus sp. (sulfur- oxidizing) and Sulfobacillus sp. (iron-		72%	89%	Thermodynamics analysis shows bioleaching has much greater potential to	[35]

Table S3: Fu	Ingal-based bioleachi	ng for re	ecovery o	f valuable metals from spent Li-i	on batteries (LIBs) [16].	
		Recovery efficiency				
Fungal	Key leaching condition	Co	Li	Additional information	References	

JAnalTechRes2024	; 6 (2): 00-00				DOI:10.26502/jatr.44
Aspergillus niger (PTCC 5210)	Pulp density: 1% (w/v); pH: 6.0	45%	95%	Spent medium exhibited highest metal extraction yield. Also, bioacids yielded higher metal extraction than synthetic chemical acids.	[36]
A. niger MM1/SG1 (isolated)	Pulp density: 0.25% (w/v); carbon source: sucrose; pH: 3.5	80– 82%	100%	Leaching efficiency was higher in cell-free spent medium. Also, bioacids yielded higher metal extraction than the synthetic chemical acid (citric acid).	[37]
<i>A. niger</i> (PTCC 5210)	Pulp density: 1–2% (w/v), carbon source: sucrose	64%	100%	Co and Ni recovery were higher at 1% pulp density, while Li, Cu, Al and Mn recovery was higher at 2% pulp density.	[38]
<i>A. niger</i> (PTCC 5210)	Pulp density: 1 % (w/v), carbon source: sucrose	38%	100%	Adapted fungi showed higher metal leaching performance compared to unadopted fungi.	[39]
<i>A.niger</i> (PTCC 5010)	Pulp density: 10% (w/v), carbon source: glucose; pH: 4.5,	NA	73.3%	<i>A. niger</i> showed higher metal leaching performance than <i>Penicillium chrysogenum</i> .	[40]
P. chrysogenum (PTCC 5037)	Pulp density: 10% (w/v), carbon source: glucose; pH: 4.5,	NA	54.6%	<i>A. niger</i> showed higher metal leaching performance than <i>P. chrysogenum</i> .	[40]
A.niger (isolated)	Carbon sources: glucose,	57%	72%	Highest valuable metal recovery obtained in the one step process	[27]

 $\label{eq:constraint} Journal of Analytical Techniques and Research$

	incubation time: 21 days				
Mixed culture 1 <i>A. niger</i> and <i>Aspergillus</i> <i>tubingensis</i>	Pulp density: 1% (w/v), carbon source: sucrose, impure sucrose or vinasse	~60%	~95%	Spent medium leaching showed higher metal recovery efficiency with vanasse as the carbon source	[41]

Reference

[1] S. Aktas, D. J. Fray, O. Burheim, J. Fenstad, and E. Açma, 'Recovery of metallic values from spent Li ion secondary batteries', *Miner. Process. Extr. Metall.*, vol. 115, no. 2, pp. 95–100, Jun. 2006, doi: 10.1179/174328506X109040.

[2] J. F. Paulino, N. G. Busnardo, and J. C. Afonso, 'Recovery of valuable elements from spent Li-batteries', *J. Hazard. Mater.*, vol. 150, no. 3, pp. 843–849, Feb. 2008, doi: 10.1016/j.jhazmat.2007.10.048.

[3] R.-C. Wang, Y.-C. Lin, and S.-H. Wu, 'A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries', *Hydrometallurgy*, vol. 99, no. 3, pp. 194–201, Nov. 2009, doi: 10.1016/j.hydromet.2009.08.005.

[4] S. Zhu, W. He, G. Li, X. Zhou, X. Zhang, and J. Huang, 'Recovery of Co and Li from spent lithium-ion batteries by combination method of acid leaching and chemical precipitation', *Trans. Nonferrous Met. Soc. China*, vol. 22, no. 9, pp. 2274–2281, Sep. 2012, doi: 10.1016/S1003-6326(11)61460-X.

[5] H. Zou, E. Gratz, D. Apelian, and Y. Wang, 'A novel method to recycle mixed cathode materials for lithium ion batteries', *Green Chem.*, vol. 15, no. 5, pp. 1183–1191, Apr. 2013, doi: 10.1039/C3GC40182K.

[6] X. Zhang *et al.*, 'A closed-loop process for recycling LiNi1/3Co1/3Mn1/3O2 from the cathode scraps of lithium-ion batteries: Process optimization and kinetics analysis', *Sep. Purif. Technol.*, vol. 150, pp. 186–195, Aug. 2015, doi: 10.1016/j.seppur.2015.07.003.

[7] R. Sattar, S. Ilyas, H. N. Bhatti, and A. Ghaffar, 'Resource recovery of critically-rare metals by hydrometallurgical recycling of spent lithium ion batteries', *Sep. Purif. Technol.*, vol. 209, pp. 725–733, Jan. 2019, doi: 10.1016/j.seppur.2018.09.019.

[8] Q. Li, K. Y. Fung, L. Xu, C. Wibowo, and K. M. Ng, 'Process Synthesis: Selective Recovery of Lithium from Lithium-Ion Battery Cathode Materials', *Ind. Eng. Chem. Res.*, vol. 58, no. 8, pp. 3118–3130, Feb. 2019, doi: 10.1021/acs.iecr.8b04899.

[9] C.-H. Jo and S.-T. Myung, 'Efficient recycling of valuable resources from discarded lithium-ion batteries', *J. Power Sources*, vol. 426, pp. 259–265, Jun. 2019, doi: 10.1016/j.jpowsour.2019.04.048.

[10] P. Yadav, C. J. Jie, S. Tan, and M. Srinivasan, 'Recycling of cathode from spent lithium iron phosphate batteries', *J. Hazard. Mater.*, vol. 399, p. 123068, Nov. 2020, doi: 10.1016/j.jhazmat.2020.123068.

[11] W. Lv *et al.*, 'Selective Recovery of Lithium from Spent Lithium-Ion Batteries by Coupling Advanced Oxidation Processes and Chemical Leaching Processes', *ACS Sustain. Chem. Eng.*, vol. 8, no. 13, pp. 5165–5174, Apr. 2020, doi: 10.1021/acssuschemeng.9b07515.

[12] Y. Zhang, W. Wang, J. Hu, T. Zhang, and S. Xu, 'Stepwise Recovery of Valuable Metals from Spent Lithium Ion Batteries by Controllable Reduction and Selective Leaching and Precipitation', *ACS Sustain. Chem. Eng.*, vol. 8, no. 41, pp. 15496–15506, Oct. 2020, doi: 10.1021/acssuschemeng.0c04106.

[13] W. Gao et al., 'Selective recovery of valuable metals from spent lithium-ion batteries – Process

development and kinetics evaluation', *J. Clean. Prod.*, vol. 178, pp. 833–845, Mar. 2018, doi: 10.1016/j.jclepro.2018.01.040.

[14] S. Tao, J. Li, L. Wang, L. Hu, and H. Zhou, 'A method for recovering Li3PO4 from spent lithium iron phosphate cathode material through high-temperature activation', *Ionics*, vol. 25, no. 12, pp. 5643–5653, Dec. 2019, doi: 10.1007/s11581-019-03070-w.

[15] Y. Yang *et al.*, 'A process for combination of recycling lithium and regenerating graphite from spent lithium-ion battery', *Waste Manag.*, vol. 85, pp. 529–537, Feb. 2019, doi: 10.1016/j.wasman.2019.01.008.

[16] B. K. Biswal and R. Balasubramanian, 'Recovery of valuable metals from spent lithium-ion batteries using microbial agents for bioleaching: a review', *Front. Microbiol.*, vol. 14, May 2023, doi: 10.3389/fmicb.2023.1197081.

[17] B. K. Biswal, U. U. Jadhav, D. Patil, and E.-H. Yang, 'Physicochemical and biological methods for treatment of municipal solid waste incineration ash to reduce its potential adverse impacts on groundwater', in *Contaminants of Emerging Concerns and Reigning Removal Technologies*, CRC Press, 2022.

[18] D. Mishra, D.-J. Kim, D. E. Ralph, J.-G. Ahn, and Y.-H. Rhee, 'Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans', *Waste Manag.*, vol. 28, no. 2, pp. 333–338, Jan. 2008, doi: 10.1016/j.wasman.2007.01.010.

[19] J. J. Roy, B. Cao, and S. Madhavi, 'A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach', *Chemosphere*, vol. 282, p. 130944, Nov. 2021, doi: 10.1016/j.chemosphere.2021.130944.

[20] M. P. Do, J. Jegan Roy, B. Cao, and M. Srinivasan, 'Green Closed-Loop Cathode Regeneration from Spent NMC-Based Lithium-Ion Batteries through Bioleaching', *ACS Sustain. Chem. Eng.*, vol. 10, no. 8, pp. 2634–2644, Feb. 2022, doi: 10.1021/acssuschemeng.1c06885.

[21] L. Li *et al.*, 'Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment', *J. Power Sources*, vol. 233, pp. 180–189, Jul. 2013, doi: 10.1016/j.jpowsour.2012.12.089.

[22] T. Naseri, N. Bahaloo-Horeh, and S. M. Mousavi, 'Environmentally friendly recovery of valuable metals from spent coin cells through two-step bioleaching using *Acidithiobacillus thiooxidans*', *J. Environ. Manage.*, vol. 235, pp. 357–367, Apr. 2019, doi: 10.1016/j.jenvman.2019.01.086.

[23] T. Naseri, N. Bahaloo-Horeh, and S. M. Mousavi, 'Bacterial leaching as a green approach for typical metals recovery from end-of-life coin cells batteries', *J. Clean. Prod.*, vol. 220, pp. 483–492, May 2019, doi: 10.1016/j.jclepro.2019.02.177.

[24] G. Zeng, X. Deng, S. Luo, X. Luo, and J. Zou, 'A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries', *J. Hazard. Mater.*, vol. 199–200, pp. 164–169, Jan. 2012, doi: 10.1016/j.jhazmat.2011.10.063.

[25] G. Zeng, S. Luo, X. Deng, L. Li, and C. Au, 'Influence of silver ions on bioleaching of cobalt from spent lithium batteries', *Miner. Eng.*, vol. 49, pp. 40–44, Aug. 2013, doi: 10.1016/j.mineng.2013.04.021.

[26] M. Nazerian, N. Bahaloo-Horeh, and S. M. Mousavi, 'Enhanced bioleaching of valuable metals from spent lithium-ion batteries using ultrasonic treatment', *Korean J. Chem. Eng.*, vol. 40, no. 3, pp. 584–593, Mar. 2023, doi: 10.1007/s11814-022-1257-2.

[27] A. Hariyadi, U. Sholikah, B. Gotama, and M. A. Ghony, 'Biohydrometallurgy for cobalt recovery from spent li-ion batteries using acidophilic bacteria isolated from acid mine drainage', *Chem J Tek Kim*, vol. 9, pp. 88–96, 2022.

[28] R. A. Putra, I. A. Fajri, and A. Hariyadi, 'Metal Bioleaching of Used Lithium-Ion Battery Using Acidophilic ferrooxidans Isolated from Acid Mine Drainage', *Key Eng. Mater.*, vol. 937, pp. 193–200, 2022, doi: 10.4028/p-sd8590.

[29] Y. Xin, X. Guo, S. Chen, J. Wang, F. Wu, and B. Xin, 'Bioleaching of valuable metals Li, Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery', *J. Clean. Prod.*, vol. 116, pp. 249–258, Mar. 2016, doi: 10.1016/j.jclepro.2016.01.001.

[30] M. Hartono, M. A. Astrayudha, and H. T. B. M. Petrus, 'LITHIUM RECOVERY OF SPENT LITHIUM-ION BATTERY USING BIOLEACHING FROM LOCAL SOURCES MICROORGANISM', *Rasayan J. Chem.*, 2017, doi: 10.7324/RJC.2017.1031767.

[31] B. Xin *et al.*, 'Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria', *Bioresour. Technol.*, vol. 100, pp. 6163–9, Sep. 2009, doi: 10.1016/j.biortech.2009.06.086.

[32] A. Heydarian, S. Mousavi, F. Vakilchap, and M. Baniasadi, 'Application of a mixed culture of adapted acidophilic bacteria in two-step bioleaching of spent lithium-ion laptop batteries', *J. Power Sources*, vol. 378, pp. 19–30, Feb. 2018, doi: 10.1016/j.jpowsour.2017.12.009.

[33] F. Noruzi, N. Nasirpour, F. Vakilchap, and S. M. Mousavi, 'Complete bioleaching of Co and Ni from spent batteries by a novel silver ion catalyzed process', *Appl. Microbiol. Biotechnol.*, vol. 106, no. 13, pp. 5301–5316, Aug. 2022, doi: 10.1007/s00253-022-12056-0.

[34] N. J. Boxall, K. Y. Cheng, W. Bruckard, and A. H. Kaksonen, 'Application of indirect non-contact bioleaching for extracting metals from waste lithium-ion batteries', *J. Hazard. Mater.*, vol. 360, pp. 504–511, Oct. 2018, doi: 10.1016/j.jhazmat.2018.08.024.

[35] Z. Niu, Y. Zou, B. Xin, S. Chen, C. Liu, and Y. Li, 'Process controls for improving bioleaching performance of both Li and Co from spent lithium ion batteries at high pulp density and its thermodynamics and kinetics exploration', *Chemosphere*, vol. 109, pp. 92–98, Aug. 2014, doi: 10.1016/j.chemosphere.2014.02.059.

[36] N. B. Horeh, S. M. Mousavi, and S. A. Shojaosadati, 'Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger', *J. Power Sources*, vol. 320, pp. 257–266, Jul. 2016, doi: 10.1016/j.jpowsour.2016.04.104.

[37] B. K. Biswal, U. U. Jadhav, M. Madhaiyan, L. Ji, E.-H. Yang, and B. Cao, 'Biological Leaching and Chemical Precipitation Methods for Recovery of Co and Li from Spent Lithium-Ion Batteries', *ACS Sustain. Chem. Eng.*, vol. 6, no. 9, pp. 12343–12352, Sep. 2018, doi: 10.1021/acssuschemeng.8b02810.

[38] N. Bahaloo-Horeh and S. M. Mousavi, 'Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by Aspergillus niger', *Waste Manag.*, vol. 60, pp. 666–679, Feb. 2017, doi: 10.1016/j.wasman.2016.10.034.

[39] N. Bahaloo-Horeh, S. M. Mousavi, and M. Baniasadi, 'Use of adapted metal tolerant Aspergillus niger to enhance bioleaching efficiency of valuable metals from spent lithium-ion mobile phone batteries', *J. Clean. Prod.*, vol. 197, pp. 1546–1557, Oct. 2018, doi: 10.1016/j.jclepro.2018.06.299.

[40] Z. Kazemian, M. Larypoor, and R. Marandi, 'Evaluation of myco-leaching potential of valuable metals from spent lithium battery by Penicillium chrysogenum and Aspergillus niger', *Int. J. Environ. Anal. Chem.*, vol. 103, no. 3, pp. 514–527, Feb. 2023, doi: 10.1080/03067319.2020.1861605.

[41] N. Alavi, K. Partovi, M. Majlessi, M. Rashidi, and M. Alimohammadi, 'Bioleaching of metals from cellphones batteries by a co-fungus medium in presence of carbon materials', *Bioresour. Technol. Rep.*, vol. 15, p. 100768, Sep. 2021, doi: 10.1016/j.biteb.2021.100768.