Publication Details
ISAAC KWESI NOONI
- NUGS-Nanjing
- Photogrammetry & Remote Sensing (Phd)
- Nanjing University Of Information Science And Technology
Pharmacognostic Evaluation and Physicochemical Analysis of Paullinia pinnata L. (Sapindaceae) 06 Feb 2020
Journal of Pharmacognosy and Phytochemistry
Quantile Mapping Bias Correction on Rossby Centre Regional Climate Models for Precipitation Analysis over Kenya, East Africa 06 Feb 2020
Preprints
The heavy metal contents of some selected medicinal plants sampled from different geographical locations 06 Feb 2020
Pharmacognosy Research Journal
Evaluation of the Rossby Centre Regional Climate Model Rainfall Simulations over West Africa Using Large-Scale Spatial and Temporal Statistical Metric 06 Feb 2020
Atmosphere
High Spatial Resolution Simulation of Sunshine Duration over the Complex Terrain of Ghana 06 Feb 2020
Sensors
Support vector machine to map oil palm in a heterogeneous environment 06 Feb 2020
International Journal of Remote Sensing
Assessing contract management as a strategic tool for achieving quality of work in Ghanaian construction industry: A case study of FPMU and MMDAs 06 Feb 2020
Journal of Financial Management of Property and Construction
Water
06 Feb 2020 | 18:26
Actual evapotranspiration (ET) and its individual components’ contributions to the water–energy nexus provide insights into our hydrological cycle in a changing climate. Based on long-term satellite ET data assimilated by the Global Land Evaporation Amsterdam Model (GLEAM), we analyzed changes in ET and its components over the Nile River Basin from 1980 to 2014. The results show a multi-year mean ET of 518 mm·year–1. The long-term ET trend showed a decline at a rate of 18.8 mm·year–10. ET and its components showed strong seasonality and the ET components’ contribution to total ET varied in space and time. ET and its components decreased in humid regions, which was related to precipitation deficits. ET increases in arid-semiarid regions were due to water availability from crop irrigation fields in the Nile Plain. Precipitation was the dominant limiting driver of ET in the region. Vegetation transpiration (an average of 78.1% of total ET) dominated the basin’s water fluxes, suggesting biological fluxes play a role in the regional water cycle’s response to climate change. This analysis furthers our understanding of the water dynamics in the region and may significantly improve our knowledge of future hydrological modelling.